
Parallel Apriori

Algorithm Performance Evaluation

Vassil Halatchev

Department of Electrical Engineering and Computer Science

York University, Toronto

December 1, 2015

Parallel Apriori Algorithms

• Count Distribution – each thread generates same candidates at each pass

as every other thread

• Count Distribution Static Map (new) – same as CD but threads update

support counts concurrently

• Data Distribution – every node in system must process every database

transaction

Experimental Setup: Parameters

KEY:

• Minimum Support

• Number of Threads

• Number of CPU cores (i.e. taskset)

• D : number of Transactions

• T : average number of items per transaction

• N : number of different items in the dataset

• I : average length of frequent itemset/maximal pattern

EXTRA (fixed):

• P: number of patterns (fixed/default: 10000)

• C: correlation between patterns(fixed/default: 0.25)

• R: average confidence in a rule(fixed/default: 0.75)

Experimental Setup: Tools

• Used IBM’s Quest Synthetic Data Generator (this is the Benchmark tool) for

association rule mining

• Used the login node at Manycore Testing Lab to submit the experimental tasks

Experimental Setup: Test Measurement

• Response time was measured as the time elapsed from the initiation of the

execution of the first thread to the end time of the last thread finishing the

computation

• Apache Commons Math 3.5 was used to calculate the mean and standard

deviation

• Each configuration was ran 10 times, ignoring results from first 4 runs

• -server and –d64 passed as arguments to JVM

Performance Experiment 1 (Dummy)

• All 4 Implementations (CD, CDS, DD and Sequential) were tested on

configuration:

− Minimum Support : irrelevant

− Number of Threads : {1..64} (Note: Sequential was ran on a single thread)

− CPU’s : 32

− Empty Database

Experiment 1:DUMMY

Performance Experiment 2

• All 4 Implementations (CD, CDS, DD and Sequential) were tested on

configuration:

− Minimum Support : 0.05 (i.e. 5%), 0.04, 0.03, 0.02, 0.01, 0.005

− Number of Threads : {1..64} (Note: Sequential was ran on a single thread)

− CPU cores : 32

− K : 100(in 000’s)

− T : 10

− I : 4

− N : 1(in 000’s)

Experiment 2: Minimum Support 5%

Experiment 2: Minimum Support 4%

Experiment 2: Minimum Support 1%

Experiment 2: Minimum Support 0.5%

Performance Experiment 3

• All 4 Implementations (CD, CDS, DD) were tested on configuration:

− Minimum Support : 0.05 (i.e. 5%)

− Number of Threads : {1..64}

− CPU cores : 32

− K : 100 (in 000’s)

− T : 40

− I : 10

− N : 1 (in 000’s)

Experiment 3: Minimum Support 5%

Performance Experiment 4

• All 4 Implementations (CD, CDS, DD) were tested on configuration:

− Minimum Support : 0.05 (i.e. 5%), 0.04

− Number of Threads : {1..64}

− CPU cores : 32

− D : 1000 (in 000’s)

− T : 10

− I : 4

− N : 10 (in 000’s)

Experiment 4: Minimum Support 5%

Experiment 4: Minimum Support 5% looking only at CD & DD

Thread # 1- 6: database division is beneficial

Thread #11-end: database division is detrimental

Experiment 4: Minimum Support 0.5%

Performance Experiment 5

• All 4 Implementations (CD, CDS) were tested on configuration:

− Minimum Support : 0.05 (i.e. 5%)

− Number of Threads : {1..128}

− CPU cores : 4

− K : 100 (in 000’s)

− T : 40

− I : 10

− N : 1 (in 000’s)

Experiment 4: Minimum Support 0.5% on 4 cores

Hypothesis & Reasoning

1. Small database (e.g. 100K) and a large number of candidates per pass

you would expect DD > CD & CDS

• Reasoning: DD will go through candidates per pass faster, as they are distributed

among threads, than CD and CDS, and the database is small so it won’t hinder its

performance there

2. Large database (e.g. 10000K+) and a small number of candidates per pass

you would expect CD & CDS > DD

• Reasoning: The running time cost of having to parse the whole database by each

thread at every pass will be greater than the cost incurred by CD or CDS

Further Testing

• ScaleUp(Increase the number of threads and database size proportionally)

e.g. Number of threads = 1, database size = 1GB

Number of threads = 64, database size = 64GB

while keeping the result constant (i.e. number of candidates whose support

must be summed remains constant)

• Relative ScaleUp (number of threads = 1, database size = 1GB will be our

reference point)

• SizeUp : fix the number of threads (e.g. 32) and increase the size of the

database each node holds

of Candidates (for K100T10I4)

Minimum support: 0.05

Number of Candidates generated: 55

Number of Frequent itemsets found: 10

Number of levels: 1

Minimum support: 0.04

Number of Candidates generated: 351

Number of Frequent itemsets found: 26

Number of levels: 1

Minimum support: 0.03

Number of Candidates generated: 1830

Number of Frequent itemsets found: 60

Number of levels: 1

Minimum support: 0.02

Number of Candidates generated: 12090

Number of Frequent itemsets found: 155

Number of levels: 1

Minimum support: 0.01

Number of Candidates generated: 70501

Number of Frequent itemsets found: 385

Number of levels: 3

Minimum support: 0.005

Number of Candidates generated: 162389

Number of Frequent itemsets found: 1073

Number of levels: 5

