
Concurrent Object Oriented Languages
CSE 6490A

https://wiki.cse.yorku.ca/course/6490A

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 1 / 38

https://wiki.cse.yorku.ca/course/6490A
https://wiki.cse.yorku.ca/course/6490A

Instructor

Name: Franck van Breugel
Email: franck@cse.yorku.ca
Office: Lassonde Building, room 3046
Office hours: Tuesdays, 16:00-17:00 or by appointment

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 2 / 38

https://wiki.cse.yorku.ca/course/6490A

Overview

concurrent algorithms
concurrent programming in Java
measuring performance of concurrent Java code
verification of concurrent Java code

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 3 / 38

https://wiki.cse.yorku.ca/course/6490A

Overview

searching the literature
guest lecture by librarian John Dupuis (September 15)
writing
guest lecture by Susan Visser (Publishing Program
Manager, IBM) (TBC)
using Intel’s Multicore Testing Lab
guest lecture by Trevor Brown (TBC)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 4 / 38

https://wiki.cse.yorku.ca/course/6490A

Evaluation

3 assignments (20% each)
3 presentations (5% each)
paper (15%)
participation (10%)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 5 / 38

https://wiki.cse.yorku.ca/course/6490A

Assignments

1 Find a nontrivial (concurrent) algorithm in the literature.
2 Implement your algorithm in Java. Also implement a

“baseline” algorithm in Java.
3 Measure the performance of both implementations.

You will get access to Intel’s Multicore Testing Lab.

For each assignment, you are expected to write a report.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 6 / 38

https://wiki.cse.yorku.ca/course/6490A

Presentations

Present your assignments.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 7 / 38

https://wiki.cse.yorku.ca/course/6490A

Paper

Combine your assignments into a paper
of 15 pages
using LATEX
in Springer’s Lecture Notes in Computer Science format.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 8 / 38

https://wiki.cse.yorku.ca/course/6490A

Participation

For example,
contributions to the wiki
discussion in class
questions after presentations
be on time
. . .

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 9 / 38

https://wiki.cse.yorku.ca/course/6490A

Academic honesty

“If you put your name on something, then it is your work, unless
you explicitly say that it is not.”

Examples of academic dishonesty include copying text,
diagrams, code, etc. without providing a reference, in your
assignments and presentations.

Read http://secretariat-policies.info.yorku.ca/
policies/academic-honesty-senate-policy-on/ for
more details. Also read
http://www.yorku.ca/spark/academic_integrity/.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 10 / 38

http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/
http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/
http://www.yorku.ca/spark/academic_integrity/
https://wiki.cse.yorku.ca/course/6490A

CSE account

To contribute to the wiki, and
to view your marks for the assignments, presentations and
paper,

you need a CSE account.

You can create your CSE account at
https://webapp.cse.yorku.ca/activ8

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 11 / 38

https://webapp.cse.yorku.ca/activ8
https://wiki.cse.yorku.ca/course/6490A

Concurrency

In which systems/applications do you find concurrency today?

operating systems
data bases
graphical user interfaces
Internet applications

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 12 / 38

https://wiki.cse.yorku.ca/course/6490A

Concurrency

In which systems/applications will you find concurrency in the
near future?

Everywhere?

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 13 / 38

https://wiki.cse.yorku.ca/course/6490A

Concurrency

“Concurrency has long been touted as the “next big
thing” and “the way of the future,” but for the past 30
years, mainstream software development has been
able to ignore it. Our parallel future has finally arrived:
new machines will be parallel machines, and this will
require major changes in the way we develop
software.”

Herb Sutter and James Larus. Software and the Concurrency
Revolution. Queue, 3(7):54-62, September 2005.

source: www.microsoft.com

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 14 / 38

https://wiki.cse.yorku.ca/course/6490A

Moore’s Law

“The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year.
Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term,
the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly
constant for at least 10 years.”

Gordon E. Moore. Cramming more components onto integrated
circuits. Electronics, 38(8), April 1965.

source: www.rentoid.com

Carver Mead dubbed this Moore’s Law.
https://wiki.cse.yorku.ca/course/6490A CSE 6490A 15 / 38

https://wiki.cse.yorku.ca/course/6490A

Moore’s Law

source: www.intel.com

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 16 / 38

https://wiki.cse.yorku.ca/course/6490A

Moore’s Law

“So the original one was doubling every year in
complexity now in 1975, I had to go back and revisit
this . . . So then I changed it to looking forward, we’d
only be doubling every couple of years . . . ”

Excerpts from a conversation with Gordon Moore (source:
www.intel.com)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 17 / 38

https://wiki.cse.yorku.ca/course/6490A

Moore’s Law

source: www.intel.com

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 18 / 38

https://wiki.cse.yorku.ca/course/6490A

Moore’s Law

This complexity (which doubled every two years) is strongly
correlated with

processor speed
memory capacity

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 19 / 38

https://wiki.cse.yorku.ca/course/6490A

The End of Moore’s Law?

“The combination of limited instruction parallelism
suitable for superscalar issue, practical limits to
pipelining, and a “power ceiling” limited by practical
cooling limitations has limited future speed increases
within conventional processor cores to the basic
Moore’s law improvement rate of the underlying
transistors.”

Kunle Olukotun and Lance Hammond. The Future of
Microprocessors. Queue, 3(7):26–29, September 2005.

source: www.stanford.edu

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 20 / 38

https://wiki.cse.yorku.ca/course/6490A

Multicore CPUs

“Chip multicore processors implement two or more
conventional superscalar processors together on a
single die.”

Kunle Olukotun and Lance Hammond. The Future of
Microprocessors. Queue, 3(7):26–29, September 2005.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 21 / 38

https://wiki.cse.yorku.ca/course/6490A

The End of Moore’s Law?

“While Moore’s Law continues to hold, due to both
intractable physical limitations and practical
engineering considerations, that increasing density is
no longer being spent on boosting clock rate, but
rather on putting multiple CPU cores on a single CPU
die. . . . most code can (and should) achieve
concurrency without explicit parallelism . . . ”

Bryan Cantrill and Jeff Bonwick. Real-world concurrency.
Communications of the ACM, 51(11):34-39, November 2008.

source: www.joyent.com and Andre van Eyssen

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 22 / 38

https://wiki.cse.yorku.ca/course/6490A

Multicore CPUs

dual-core processor
(AMD Phenom II X2 and Intel Core 2 Duo)
quad-core processor
(AMD Phenom II X4 and Intel Core 2 Quad)
8-core processor
(Intel Xeon 7560 and Sun UltraSPARC T2)
15-core processor (Intel Xeon E7-2890)
16-core processor (AMD Opteron 6300)
61-core processor (Intel Xeon Phi)
80-core processor (Intel Teraflops Research Chip)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 23 / 38

https://wiki.cse.yorku.ca/course/6490A

Multicore GPUs

NVIDIA Tesla K40 (4992 cores)
AMD FirePro W7100 (1792 cores)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 24 / 38

https://wiki.cse.yorku.ca/course/6490A

Amdahl’s Law

“. . . the effort expended on achieving high parallel
processing rates is wasted unless it is accompanied
by achievements in sequential processing rates of
very nearly the same magnitude.”

Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of
the AFIPS Joint Computer Conferences, pages 483–485,
Atlantic City, NJ, USA, April 1967. ACM.

source: Perry Kivolowitz

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 25 / 38

https://wiki.cse.yorku.ca/course/6490A

Concurrency is Hard

“But concurrency is hard. Not only are today’s
languages and tools inadequate to transform
applications into parallel programs, but also it is
difficult to find parallelism in mainstream applications,
and—worst of all—concurrency requires programmers
to think in a way humans find difficult.”

Herb Sutter and James Larus. Software and the Concurrency
Revolution. Queue, 3(7):54-62, September 2005.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 26 / 38

https://wiki.cse.yorku.ca/course/6490A

Concurrency is Hard

“Multicore architectures will (finally) bring parallel
computing into the mainstream. To effectively exploit
them, legions of programmers must emphasize
concurrency.”

“Nontrivial software written with threads, semaphores,
and mutexes are incomprehensible to humans and
cannot and should not be trusted!”

Edward A. Lee. Making Concurrency Mainstream. Presentation
at the 17th International Conference on Concurrency Theory,
Bonn, Germany, August 27, 2006.

source: ptolemy.eecs.berkeley.edu

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 27 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

wh i le (t r ue) {
System . out . p r i n t (" 1 ") ;

}

and another thread executes

wh i le (t r ue) {
System . out . p r i n t (" 2 ") ;

}

What is the output?

Answer
Arbitrary infinite sequence of 1’s and 2’s.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 28 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

wh i le (t r ue) {
System . out . p r i n t (" 1 ") ;

}

and another thread executes

wh i le (t r ue) {
System . out . p r i n t (" 2 ") ;

}

What is the output?

Answer
Arbitrary infinite sequence of 1’s and 2’s.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 28 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
If I run the two threads twice, may it give different outputs?

Answer
Yes.

Nondeterminism: in an execution not all steps are fully
determined, that is, at some points in the execution there are
choices between different alternatives.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 29 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
If I run the two threads twice, may it give different outputs?

Answer
Yes.

Nondeterminism: in an execution not all steps are fully
determined, that is, at some points in the execution there are
choices between different alternatives.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 29 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
If I run the two threads twice, may it give different outputs?

Answer
Yes.

Nondeterminism: in an execution not all steps are fully
determined, that is, at some points in the execution there are
choices between different alternatives.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 29 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Threads can exchange information by accessing and updating
shared variables.

Question
One thread executes

v = 1; v = v + 1;

and another thread executes

v = 0;

What is the final value of v?

Answer
0, 1 or 2.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 30 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Threads can exchange information by accessing and updating
shared variables.

Question
One thread executes

v = 1; v = v + 1;

and another thread executes

v = 0;

What is the final value of v?

Answer
0, 1 or 2.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 30 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

v = v + 1;

and another thread executes

v = v + 1;

If the initial value of v is 0, then what is the final value of v?

Answer
1 or 2.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 31 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

v = v + 1;

and another thread executes

v = v + 1;

If the initial value of v is 0, then what is the final value of v?

Answer
1 or 2.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 31 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How can the final value of v be 1?

Answer
The assignment v = v + 1 is not atomic.

LOAD(v) ; INC ; STORE(v) ;

Later in the course, we will study different ways to make a
sequence of instructions atomic.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 32 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How can the final value of v be 1?

Answer
The assignment v = v + 1 is not atomic.

LOAD(v) ; INC ; STORE(v) ;

Later in the course, we will study different ways to make a
sequence of instructions atomic.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 32 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How can the final value of v be 1?

Answer
The assignment v = v + 1 is not atomic.

LOAD(v) ; INC ; STORE(v) ;

Later in the course, we will study different ways to make a
sequence of instructions atomic.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 32 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How can the final value of v be 1?

Answer
The assignment v = v + 1 is not atomic.

LOAD(v) ; INC ; STORE(v) ;

Later in the course, we will study different ways to make a
sequence of instructions atomic.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 32 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

v = 0;

and another thread executes

v = maximal value ;

Assume that v is represented by 64 bits. How many different
final values can v have?

Answer
4.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 33 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

v = 0;

and another thread executes

v = maximal value ;

Assume that v is represented by 64 bits. How many different
final values can v have?

Answer
4.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 33 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How can v have 4 different final values?

Answer
The assignments v = 0 and v = maximal value may not be
atomic.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 34 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How can v have 4 different final values?

Answer
The assignments v = 0 and v = maximal value may not be
atomic.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 34 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

data = 1;
f l a g = t rue ;

and another thread executes

i f (f l a g) {
System . out . p r i n t l n (data) ;

}

If the initial values of data and flag are 0 and false, is anything
printed? If so, what is printed?

Answer
In some executions nothing is printed. In others, either 0 or 1 is
printed.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 35 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
One thread executes

data = 1;
f l a g = t rue ;

and another thread executes

i f (f l a g) {
System . out . p r i n t l n (data) ;

}

If the initial values of data and flag are 0 and false, is anything
printed? If so, what is printed?

Answer
In some executions nothing is printed. In others, either 0 or 1 is
printed.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 35 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How is it possible that sometimes 0 is printed?

Answer
The Java memory model allows compilers, virtual machines
and processors to do optimizations.

Later in the course, we will study memory models.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 36 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How is it possible that sometimes 0 is printed?

Answer
The Java memory model allows compilers, virtual machines
and processors to do optimizations.

Later in the course, we will study memory models.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 36 / 38

https://wiki.cse.yorku.ca/course/6490A

What makes Concurrency so Hard?

Question
How is it possible that sometimes 0 is printed?

Answer
The Java memory model allows compilers, virtual machines
and processors to do optimizations.

Later in the course, we will study memory models.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 36 / 38

https://wiki.cse.yorku.ca/course/6490A

Field trip to the library

On Tuesday September 15, 17:30-19:00, we will have a guest
lecture by librarian John Dupuis on literature search in the
Steacie Building, room 021B (the basement computer lab).

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 37 / 38

https://wiki.cse.yorku.ca/course/6490A

To do

Get a CSE account.
Read the material posted on the wiki.
Think about the research area in which you want to find
your concurrent algorithm.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 38 / 38

https://wiki.cse.yorku.ca/course/6490A

