
Concurrent Object Oriented Languages
Testing Concurrent Code

wiki.eecs.yorku.ca/course/6490A

wiki.eecs.yorku.ca/course/6490A CSE 6490A 1 / 21

wiki.eecs.yorku.ca/course/6490A
wiki.eecs.yorku.ca/course/6490A

Testing sequential code

If possible, first test your code in the same way you test
sequential code.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 2 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Problem
Test the class

public class RedBlackTree<T> {
public RedBlackTree() { ... }
public boolean contains(T key) { ... }
public boolean add(T key) { ... }

}

wiki.eecs.yorku.ca/course/6490A CSE 6490A 3 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
What “input” does the constructor need?

Answer
Nothing.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 4 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
What is the “input” for the methods contains and add?

Answer
A red-black tree and an element.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 5 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
Which red-black tree and which element?

Answer
A random red-black tree and a random element.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 6 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
How do we create a random red-black tree?

Answer
By adding random elements, starting from an empty red-black
tree.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 7 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

RedBlackTree<Integer> tree =
new RedBlackTree<Integer>();

for (...) {
int element = random integer;
tree.add(element);

}

wiki.eecs.yorku.ca/course/6490A CSE 6490A 8 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
How do we test the contains method?

Answer
Compare it against the contains method of the HashSet
class.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 9 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
How do we test the add method?

Answer
Compare it against the add method of the HashSet class.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 10 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Question
Is there anything else we want to check?

Answer
We may want to check that the tree is a red-black tree.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 11 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

To the class RedBlackTree add the method

/**
* ...

* @throws RuntimeException if this tree

* is not a red-black tree.

*/
public void isValid() throws RuntimeException
{

...
}

wiki.eecs.yorku.ca/course/6490A CSE 6490A 12 / 21

wiki.eecs.yorku.ca/course/6490A

Testing sequential code

Problem
Check that each test terminates.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 13 / 21

wiki.eecs.yorku.ca/course/6490A

Testing concurrent code

Facts
Writing concurrent code is harder than sequential code.
Anything that can go wrong in sequential code can also go
wrong in concurrent code.
But concurrent code may also contains deadlocks,
livelocks, data races, etc.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 14 / 21

wiki.eecs.yorku.ca/course/6490A

Testing concurrent code

Question
Why is testing concurrent code more difficult than testing
sequential code?

Answer
The test suite consists of concurrent code (which is more
difficult to write than sequential code).
The failures in concurrent code are nondeterministic (as a
consequence, reproducing failures can be maddingly
difficult).

wiki.eecs.yorku.ca/course/6490A CSE 6490A 15 / 21

wiki.eecs.yorku.ca/course/6490A

Testing

Caution
Test code can introduce timing or synchronization artifacts that
can mask bugs.

Bugs that disappear when you add test code are sometimes
called Heisenbugs. The term is a pun on the name of Werner
Heisenberg, the physicist who first asserted the observer effect
of quantum mechanics, which states that the act of observing a
system inevitably alters its state.

source: German Federal Archives

wiki.eecs.yorku.ca/course/6490A CSE 6490A 16 / 21

wiki.eecs.yorku.ca/course/6490A

Randomization

Tests should be random so that the compiler cannot
precompute the results.

Random number generators can create couplings between
classes and timing artifacts, because most random number
generator classes are thread safe.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 17 / 21

wiki.eecs.yorku.ca/course/6490A

Random number generator

static int xorShift(int random)
{

random ^= (random << 6);
random ^= (random >>> 21);
random ^= (random << 7);
return random;

}

wiki.eecs.yorku.ca/course/6490A CSE 6490A 18 / 21

wiki.eecs.yorku.ca/course/6490A

George Marsaglia

American mathematician
and computer scientist.
Professor at Washington
State University and
Florida State University.
Known for developing
some of the most
commonly used
methods for generating
random numbers.

George Marsaglia
(1924–2011)

source: Journal of Modern Applied Statistical

Methods

wiki.eecs.yorku.ca/course/6490A CSE 6490A 19 / 21

wiki.eecs.yorku.ca/course/6490A

Testing concurrent code

Factors to consider when testing concurrent programs
Run tests more than once since they are nondeterministic.
Explore different interleavings:

Ensure that all threads start at the “same time.” Use for
example a CyclicBarrier.
Ensure that each thread runs “long enough.”

Match the number of threads to the platform:
as many threads as cores, thereby reducing potential
interactions between threads, and
many more threads than cores, thereby reducing the
potential interactions between threads.

wiki.eecs.yorku.ca/course/6490A CSE 6490A 20 / 21

wiki.eecs.yorku.ca/course/6490A

