Concurrent Object Oriented Languages

Binary Decision Diagrams

https://wiki.cse.yorku.ca/course/6490A

Model checking

- Explicit: states and transitions are represented explicitly. Drawback: the state space of interesting systems is usually too large to represent explicitly.
- Symbolic: (sets of) states and (sets of) transitions are represented symbolically.

Key idea: exploit the fact that the state space of most systems is not random.
We focus on one symbolic approach:

- BDD based

Satisfiability

Cook's theorem
Satisfiability checking of Boolean expressions is NP-complete.

Stephen Cook

- recipient of the ACM Turing award (1982)
- fellow of the Royal Society of London (1998)
- fellow of the Royal Society of Canada (1984)
- member of the National Academy of Sciences (1985)
- member of the American Academy of Arts and Sciences (1986)

Source: Jiri Janicek

Tautology

Theorem

Tautology checking of Boolean expressions is co-NP-complete.

Disjunctive normal form

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in DNF.

Proposition

Satisfiability checking of Boolean expressions in DNF is in P.

Proposition

Tautology checking of Boolean expressions in DNF is co-NP-complete.

Conjunctive normal form

Definition

A clause is a disjunction of literals.

Definition

A Boolean expression is in conjunctive normal form (CNF) if it is a conjunction of clauses.

Proposition

Any Boolean expression is equivalent to one in CNF.

Proposition

Satisfiability checking of Boolean expressions in CNF is NP-complete.

Proposition

Tautology checking of Boolean expressions in CNF is in P.

Notation

$$
\begin{array}{rll}
0 & : & \text { false } \\
1 & : & \text { true } \\
x \rightarrow t_{1}, t_{0} & : & \left(x \wedge t_{1}\right) \vee\left(\neg x \wedge t_{0}\right)
\end{array}
$$

Definition

The set of Boolean expressions in if-then-else normal form (INF) is defined by

$$
t::=0|1| x \rightarrow t, t
$$

Question
Give a Boolean expression in INF equivalent to $x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right)$.

Question

Give a Boolean expression in INF equivalent to $x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right)$.

Answer

$$
\begin{aligned}
t & =x_{1} \rightarrow t_{1}, t_{0} \\
t_{0} & =x_{2} \rightarrow t_{01}, t_{00} \\
t_{1} & =x_{2} \rightarrow t_{11}, t_{10} \\
t_{00} & =x_{3} \rightarrow 0,0 \\
t_{01} & =x_{3} \rightarrow 0,0 \\
t_{10} & =x_{3} \rightarrow 1,1 \\
t_{11} & =x_{3} \rightarrow 1,0
\end{aligned}
$$

If-then-else normal form

Shannon's expansion theorem

For every Boolean expression t and variable x,

$$
t=x \rightarrow t[1 / x], t[0 / x] .
$$

Proposition

Any Boolean expression is equivalent to one in INF.

Decision trees

Boolean expressions in INF can be viewed as binary trees known as decision trees.

Two types of leaves: 0 and 1

$$
\begin{array}{ll}
\hline 0 & 1 \\
\hline
\end{array}
$$

One type of internal nodes: $x \rightarrow t_{1}, t_{0}$

Decision trees

Question

Draw the decision tree for the Boolean expression in INF equivalent to $x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right)$.

Decision trees

Question

Draw the decision tree for the Boolean expression in INF equivalent to $x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right)$.

Answer

$$
\begin{aligned}
t & =x_{1} \rightarrow t_{1}, t_{0} \\
t_{0} & =x_{2} \rightarrow t_{01}, t_{00} \\
t_{1} & =x_{2} \rightarrow t_{11}, t_{10} \\
t_{00} & =x_{3} \rightarrow 0,0 \\
t_{01} & =x_{3} \rightarrow 0,0 \\
t_{10} & =x_{3} \rightarrow 1,1 \\
t_{11} & =x_{3} \rightarrow 1,0
\end{aligned}
$$

Question

Identify all equal subexpressions.

$$
\begin{aligned}
t & =x_{1} \rightarrow t_{1}, t_{0} \\
t_{0} & =x_{2} \rightarrow t_{01}, t_{00} \\
t_{1} & =x_{2} \rightarrow t_{11}, t_{10} \\
t_{00} & =x_{3} \rightarrow 0,0 \\
t_{01} & =x_{3} \rightarrow 0,0 \\
t_{10} & =x_{3} \rightarrow 1,1 \\
t_{11} & =x_{3} \rightarrow 1,0
\end{aligned}
$$

Question

Identify all equal subexpressions.

Answer

There are multiple occurrences of 0 and 1 . Furthermore, t_{00} and t_{01} are equal.

Binary decision diagram

Question

Identify the equal subtrees in the decision tree for the Boolean expression in INF equivalent to $x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right)$.

Binary decision diagram

Question

Identify the equal subtrees in the decision tree for the Boolean expression in INF equivalent to $x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right)$.

Answer

Binary decision diagram

Definition

A binary decision diagram ($B D D$) is a rooted directed acyclic graph where

- two (external) nodes where have out-degree zero and are labelled 0 and 1,
- and all other (internal) nodes have out-degree two, with one outgoing edge called the low edge and the other called the high edge, and are labelled with a variable.

Binary decision diagram

Definition

A binary decision diagram ($B D D$) is a rooted directed acyclic graph where

- two (external) nodes where have out-degree zero and are labelled 0 and 1,
- and all other (internal) nodes have out-degree two, with one outgoing edge called the low edge and the other called the high edge, and are labelled with a variable.

Notation

Let u be an internal node.
$\operatorname{var}(u)$ denotes the variable with which node u is labelled.
low (u) denotes the successor of node u along its low edge (corresponding to the case that value of $\operatorname{var}(u)$ is low, that is, 0). high(u) denotes the successor of node u along its high edge (corresponding to the case that value of $\operatorname{var}(u)$ is high, that is, 1).

Ordered binary decision diagrams

Definition

A BDD is ordered if on all paths through the graph the variables respect a given linear order $x_{1}<x_{2}<\cdots<x_{n}$.

Question

Is the BDD

ordered?

Reduced ordered binary decision diagrams

Definition

An ordered BDD is reduced if

- unique: no two distinct internal nodes u and v have the same variable, low- and high-successor, that is,
if $\operatorname{var}(v)=\operatorname{var}(u), \operatorname{low}(v)=\operatorname{low}(u)$, and $\operatorname{high}(v)=\operatorname{high}(u)$ then $u=v$.
- non-redundant: no internal node u has identical low- and high-successor, that is,

$$
\operatorname{low}(u) \neq \operatorname{high}(u) .
$$

Reduced ordered binary decision diagrams

Question

Is the ordered BDD

reduced?

Reduced ordered binary decision diagrams

Question
What is the corresponding reduced ordered BDD?

Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?

Answer

Canonicity lemma

Lemma

For a Boolean expression t with variables $x_{1}, x_{2}, \ldots, x_{n}$ and a linear order $x_{1}<x_{2}<\cdots<x_{n}$, there exists a unique reduced ordered BDD which is equivalent to t.

For the remainder, we restrict our attention to reduced ordered BDDs and simply call them BDDs.

Randal Bryant

- member of the National Academy of Engineering (2003),
- recipient of the Paris Kanellakis Theory and Practice Award (1997)
- recipient of the IEEE Emanuel R. Piore Award (2007)
- his paper on BDDs is one of the most cited computer science papers (more than 8000 citations)

Source: Randal Bryant

BDDs

Proposition
 Satisfiability checking of BDDs is constant time.

Proposition

Tautology checking of BDDs is constant time.

The variable order matters

Question

Draw the BDD corresponding to

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

for the variable ordering

$$
x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<x_{6}
$$

The variable order matters

Question

Draw the BDD corresponding to

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

for the variable ordering

$$
x_{1}<x_{4}<x_{5}<x_{2}<x_{3}<x_{6}
$$

The variable order matters

Theorem
 Deciding whether a given variable order is optimal is NP-hard.

Heuristics are used to find good variable orderings. For more details, see, for example,
I. Wegener. Branching Programs and Binary Decision Diagrams:

Theory and Applications. 2000.

Data structures for BDDs

The nodes are represented as integers $0,1,2, \ldots$ where 0 and 1 represent the leaves labelled 0 and 1 .

Given a variable ordering $x_{1}<x_{2}<\cdots<x_{n}$, the variables are represented by their indices $0,1, \ldots, n$.

Node table

The node table can be viewed as a partial function

$$
T: \mathbb{N} \rightarrow\left(\mathbb{N}^{3} \cup \mathbb{N}\right)
$$

which maps the index of a node to the indices of its variable, lowand high-successor.

$$
u \mapsto(v, \ell, h)
$$

Note that 0 and 1 do not have a low- and high-successor. These external vertices are assigned a variable index which is $n+1$, where n is the number of variables. (This choice simplifies some of the algorithms to be discussed later.)

Operations on node table

$\operatorname{init}(T)$: initializes T to contain only nodes 0 and 1.

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	$n+1$		
1	$n+1$		

Operations on node table

$u \leftarrow \operatorname{add}(T, i, \ell, h):$ allocate a new node u with attributes (i, ℓ, h).

Question

Given the node table

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	$n+1$		
1	$n+1$		

what does the operation $\operatorname{add}(T, 4,1,0)$ return?

Operations on node table

$u \leftarrow \operatorname{add}(T, i, \ell, h):$ allocate a new node u with attributes (i, ℓ, h).

Question

Given the node table

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	$n+1$		
1	$n+1$		

what does the operation $\operatorname{add}(T, 4,1,0)$ return?

Answer

2.

Operations on node table

$u \leftarrow \operatorname{add}(T, i, \ell, h):$ allocate a new node u with attributes (i, ℓ, h).

Question

Given the operation $\operatorname{add}(T, 4,1,0)$ applied to the node table

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	5		
1	5		

what is the resulting node table?

Operations on node table

$u \leftarrow \operatorname{add}(T, i, \ell, h):$ allocate a new node u with attributes (i, ℓ, h).

Question

Given the operation $\operatorname{add}(T, 4,1,0)$ applied to the node table

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	5		
1	5		

what is the resulting node table?

Answer

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	5		
1	5		
2	4	1	0

Operations on node table

$\operatorname{var}(u)$: look up the var attribute of u in T
$\operatorname{low}(u)$: look up the low attribute of u in T high(u) : look up the high attribute of u in T

Example of node table

Question

Give the node table corresponding to the BDD

Example of node table

Answer

u	$\operatorname{var}(u)$	$\operatorname{low}(u)$	$\operatorname{high}(u)$
0	4		
1	4		
2	3	0	1
3	2	1	2
4	1	0	3

Inverse of node table

The inverse of the node table can be viewed as a partial function

$$
H: \mathbb{N}^{3} \rightarrow \mathbb{N}
$$

which maps the indices of the attributes of a node to the index of the node.

$$
(v, \ell, h) \mapsto u
$$

For all $u \geq 2$,

$$
T(u)=(i, \ell, h) \text { iff } H(i, \ell, h)=u
$$

Operations on inverse of node table

$$
\begin{aligned}
& \operatorname{init}(H): \\
& b \leftarrow \operatorname{member}(H, i, \ell, h): \\
& \text { check if }(i, \ell, h) \text { is in } H \\
& u \leftarrow \operatorname{lookup}(H, i, \ell, h): \quad \text { find } H(i, \ell, h) \\
& \operatorname{insert}(H, i, \ell, h, u): \quad \text { make }(i, \ell, h) \text { map to } u \text { in } H
\end{aligned}
$$

Operations on BDDs

Question

Consider the node table T and its inverse H.

- Let ℓ and h be indices of nodes u_{ℓ} and u_{h}.
- Let i be the index of variable x_{i}. ${ }^{a}$

Return the index of the node of T corresponding to $x_{i} \rightarrow u_{h}, u_{\ell}$ and expand T and H if needed.

[^0]
Operations on BDDs

Мк[T, $H](i, \ell, h)$
if $\ell=h$ then
return ℓ
else if member (H, i, ℓ, h) then
return lookup(H, i, ℓ, h)
else
$u \leftarrow \operatorname{add}(T, i, \ell, h)$
insert($H, i, \ell, h)$
return u

Operations on BDDs

Question
 Consider the node table T and its inverse H. Let t be a Boolean expression. Return the node of T corresponding to t.

Operations on BDDs

$\operatorname{Build}[T, H](t)$ return build $(t, 1)$
function build (t, i)
if $i>n$ then
if t is false then return 0 else return 1 else

$$
\begin{aligned}
& u_{0} \leftarrow\left(t\left[0 / x_{i}\right], i+1\right) \\
& u_{1} \leftarrow\left(t\left[1 / x_{i}\right], i+1\right) \\
& \text { return } \operatorname{MK}\left(i, u_{0}, u_{1}\right)
\end{aligned}
$$

Operations on BDDs

Proposition

For all Boolean binary operators \otimes,

$$
\left(x \rightarrow t_{1}, t_{0}\right) \otimes\left(x \rightarrow u_{1}, u_{0}\right)=x \rightarrow t_{1} \otimes u_{1}, t_{0} \otimes u_{0}
$$

Operations on BDDs

Question

Consider the node table T and its inverse H.

- Let u_{1} and u_{2} be indices of nodes.
- Let \oplus be a Boolean binary operator.

Return the index of the node of T corresponding to $u_{1} \oplus u_{2}$ and expand T and H if needed.

Operations on BDDs

$\operatorname{Apply}[T, H]\left(\oplus, u_{1}, u_{2}\right)$
return $\operatorname{app}\left(u_{1}, u_{2}\right)$
function $\operatorname{app}\left(u_{1}, u_{2}\right)$
if $u_{1} \in\{0,1\}$ and $u_{1} \in\{0,1\}$ then

$$
u \leftarrow u_{1} \oplus u_{2}
$$

else if $\operatorname{var}\left(u_{1}\right)=\operatorname{var}\left(u_{2}\right)$ then
$u \leftarrow \operatorname{MK}\left(\operatorname{var}\left(u_{1}\right), \operatorname{app}\left(\operatorname{low}\left(u_{1}\right), \operatorname{low}\left(u_{2}\right)\right), \operatorname{app}\left(\operatorname{high}\left(u_{1}\right), \operatorname{high}\left(u_{2}\right)\right)\right.$ else if $\operatorname{var}\left(u_{1}\right)<\operatorname{var}\left(u_{2}\right)$ then

$$
u \leftarrow \operatorname{MK}\left(\operatorname{var}\left(u_{1}\right), \operatorname{app}\left(\operatorname{low}\left(u_{1}\right), u_{2}\right), \operatorname{app}\left(\operatorname{high}\left(u_{1}\right), u_{2}\right)\right)
$$

else

$$
u \leftarrow \operatorname{Mk}\left(\operatorname{var}\left(u_{2}\right), \operatorname{app}\left(u_{1}, \operatorname{low}\left(u_{2}\right)\right), \operatorname{app}\left(u_{1}, \operatorname{high}\left(u_{2}\right)\right)\right)
$$

return u

Operations on BDDs

$\operatorname{Apply}[T, H]\left(\oplus, u_{1}, u_{2}\right)$ $\operatorname{init}(G)$
return $\operatorname{app}\left(u_{1}, u_{2}\right)$
function $\operatorname{app}\left(u_{1}, u_{2}\right)$
if $G\left(u_{1}, u_{2}\right) \neq$ empty then return $G\left(u_{1}, u_{2}\right)$
if $u_{1} \in\{0,1\}$ and $u_{1} \in\{0,1\}$ then

$$
u \leftarrow u_{1} \oplus u_{2}
$$

else if $\operatorname{var}\left(u_{1}\right)=\operatorname{var}\left(u_{2}\right)$ then

$$
u \leftarrow \operatorname{Mk}\left(\operatorname{var}\left(u_{1}\right), \operatorname{app}\left(\operatorname{low}\left(u_{1}\right), \operatorname{low}\left(u_{2}\right)\right), \operatorname{app}\left(h i g h\left(u_{1}\right), \text { high }\left(u_{2}\right)\right)\right.
$$

else if $\operatorname{var}\left(u_{1}\right)<\operatorname{var}\left(u_{2}\right)$ then

$$
u \leftarrow \operatorname{MK}\left(\operatorname{var}\left(u_{1}\right), \operatorname{app}\left(\operatorname{low}\left(u_{1}\right), u_{2}\right), \operatorname{app}\left(\operatorname{high}\left(u_{1}\right), u_{2}\right)\right)
$$

else

$$
u \leftarrow \operatorname{MK}\left(\operatorname{var}\left(u_{2}\right), \operatorname{app}\left(u_{1}, \operatorname{low}\left(u_{2}\right)\right), \operatorname{app}\left(u_{1}, \operatorname{high}\left(u_{2}\right)\right)\right)
$$

$$
G\left(u_{1}, u_{2}\right) \leftarrow u
$$

return u

[^0]: ${ }^{a}$ In the variable ordering, this variable occurs before all variables occurring in the subgraphs rooted at ℓ and h.

