Concurrent Object Oriented Languages Binary Decision Diagrams

https://wiki.cse.yorku.ca/course/6490A

https://wiki.cse.yorku.ca/course/6490A CSE 6490A

• *Explicit*: states and transitions are represented explicitly.

Drawback: the state space of interesting systems is usually too large to represent explicitly.

• *Symbolic*: (sets of) states and (sets of) transitions are represented symbolically.

Key idea: exploit the fact that the state space of most systems is not random.

We focus on one symbolic approach:

BDD based

Cook's theorem

Satisfiability checking of Boolean expressions is NP-complete.

- recipient of the ACM Turing award (1982)
- fellow of the Royal Society of London (1998)
- fellow of the Royal Society of Canada (1984)
- member of the National Academy of Sciences (1985)
- member of the American Academy of Arts and Sciences (1986)

Source: Jiri Janicek

Theorem

Tautology checking of Boolean expressions is co-NP-complete.

Disjunctive normal form

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *disjunctive normal form* (DNF) if it is a disjunction of conjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in DNF.

Proposition

Satisfiability checking of Boolean expressions in DNF is in P.

Proposition

Tautology checking of Boolean expressions in DNF is co-NP-complete.

Conjunctive normal form

Definition

A *clause* is a disjunction of literals.

Definition

A Boolean expression is in *conjunctive normal form (CNF)* if it is a conjunction of clauses.

Proposition

Any Boolean expression is equivalent to one in CNF.

Proposition

Satisfiability checking of Boolean expressions in CNF is NP-complete.

Proposition

Tautology checking of Boolean expressions in CNF is in P.

Notation		
0	:	false
1	:	true
$x \rightarrow t_1, t_0$:	$(x \wedge t_1) \lor (\neg x \wedge t_0)$

Definition

The set of Boolean expressions in if-then-else normal form (INF) is defined by

$$t ::= 0 \mid 1 \mid x \to t, t$$

Question

Give a Boolean expression in INF equivalent to $x_1 \wedge (\neg x_2 \vee x_3)$.

Question

Give a Boolean expression in INF equivalent to $x_1 \wedge (\neg x_2 \vee x_3)$.

Answer

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Shannon's expansion theorem

For every Boolean expression t and variable x,

$$t = x \rightarrow t[1/x], t[0/x].$$

Proposition

Any Boolean expression is equivalent to one in INF.

Boolean expressions in INF can be viewed as binary trees known as *decision trees*.

1

Two types of leaves: 0 and 1

One type of internal nodes: $x \rightarrow t_1, t_0$

0

Decision trees

Question

Draw the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

Decision trees

Question

Draw the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

Answer X_1 X2 X_2 Х3 Х3 X3 Х3 0 0

https://wiki.cse.yorku.ca/course/6490A

CSE 6490A

If-then-else normal form

Question

Identify all equal subexpressions.

If-then-else normal form

Question

Identify all equal subexpressions.

Answer

There are multiple occurrences of 0 and 1. Furthermore, t_{00} and t_{01} are equal.

Question

Identify the equal subtrees in the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

→ Ξ →

Question

Identify the equal subtrees in the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

https://wiki.cse.yorku.ca/course/6490A (

CSE 6490A

Definition

A binary decision diagram (BDD) is a rooted directed acyclic graph where

- two (external) nodes where have out-degree zero and are labelled 0 and 1,
- and all other (internal) nodes have out-degree two, with one outgoing edge called the low edge and the other called the high edge, and are labelled with a variable.

Definition

A binary decision diagram (BDD) is a rooted directed acyclic graph where

- two (external) nodes where have out-degree zero and are labelled 0 and 1,
- and all other (internal) nodes have out-degree two, with one outgoing edge called the low edge and the other called the high edge, and are labelled with a variable.

Notation

Let u be an internal node.

var(u) denotes the variable with which node u is labelled. low(u) denotes the successor of node u along its low edge (corresponding to the case that value of var(u) is low, that is, 0). high(u) denotes the successor of node u along its high edge (corresponding to the case that value of var(u) is high, that is, 1).

Ordered binary decision diagrams

Definition

A BDD is *ordered* if on all paths through the graph the variables respect a given linear order $x_1 < x_2 < \cdots < x_n$.

Question

Is the BDD

ordered?

Definition

An ordered BDD is reduced if

• *unique*: no two distinct internal nodes *u* and *v* have the same variable, low- and high-successor, that is,

if var(v) = var(u), low(v) = low(u), and high(v) = high(u)then u = v.

• *non-redundant*: no internal node *u* has identical low- and high-successor, that is,

$$low(u) \neq high(u).$$

Reduced ordered binary decision diagrams

Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?

Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?

Answer

Lemma

For a Boolean expression t with variables x_1, x_2, \ldots, x_n and a linear order $x_1 < x_2 < \cdots < x_n$, there exists a unique reduced ordered BDD which is equivalent to t.

For the remainder, we restrict our attention to reduced ordered BDDs and simply call them BDDs.

- member of the National Academy of Engineering (2003),
- recipient of the Paris Kanellakis Theory and Practice Award (1997)
- recipient of the IEEE Emanuel R. Piore Award (2007)
- his paper on BDDs is one of the most cited computer science papers (more than 8000 citations)

Source: Randal Bryant

Proposition

Satisfiability checking of BDDs is constant time.

Proposition

Tautology checking of BDDs is constant time.

Question

Draw the BDD corresponding to

$$(x_1 \wedge x_2) \vee (x_3 \wedge x_4) \vee (x_5 \wedge x_6)$$

for the variable ordering

$$x_1 < x_2 < x_3 < x_4 < x_5 < x_6$$

Question

Draw the BDD corresponding to

$$(x_1 \wedge x_2) \vee (x_3 \wedge x_4) \vee (x_5 \wedge x_6)$$

for the variable ordering

$$x_1 < x_4 < x_5 < x_2 < x_3 < x_6$$

Theorem

Deciding whether a given variable order is optimal is NP-hard.

Heuristics are used to find good variable orderings. For more details, see, for example,

I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. 2000. The nodes are represented as integers 0, 1, 2, \ldots where 0 and 1 represent the leaves labelled 0 and 1.

Given a variable ordering $x_1 < x_2 < \cdots < x_n$, the variables are represented by their indices 0, 1, ..., *n*.

The node table can be viewed as a partial function

$$T:\mathbb{N}\to(\mathbb{N}^3\cup\mathbb{N})$$

which maps the index of a node to the indices of its variable, lowand high-successor.

$$u\mapsto (v,\ell,h)$$

Note that 0 and 1 do not have a low- and high-successor. These external vertices are assigned a variable index which is n + 1, where n is the number of variables. (This choice simplifies some of the algorithms to be discussed later.)

init(T): initializes T to contain only nodes 0 and 1.

и	var(u)	low(u)	high(u)
0	n+1		
1	n+1		

Operations on node table

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Operations on node table

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Answer

2.

Operations on node table

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Question

Given the operation add(T, 4, 1, 0) applied to the node table

и	var(u)	low(u)	high(u)
0	5		
1	5		

what is the resulting node table?

Operations on node table

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Question

Given the operation add(T, 4, 1, 0) applied to the node table

и	var(u)	low(u)	high(u)
0	5		
1	5		

what is the resulting node table?

Answer

и	var(u)	low(u)	high(u)
0	5		
1	5		
2	4	1	0

https://wiki.cse.yorku.ca/course/6490A

var(u) : look up the var attribute of u in Tlow(u) : look up the low attribute of u in Thigh(u) : look up the high attribute of u in T

Answer

и	var(u)	low(u)	high(u)
0	4		
1	4		
2	3	0	1
3	2	1	2
4	1	0	3

https://wiki.cse.yorku.ca/course/6490A CSE 6490A

The inverse of the node table can be viewed as a partial function

$$H: \mathbb{N}^3 \to \mathbb{N}$$

which maps the indices of the attributes of a node to the index of the node.

$$(v, \ell, h) \mapsto u$$

For all $u \geq 2$,

$$T(u) = (i, \ell, h) \text{ iff } H(i, \ell, h) = u.$$

$$init(H)$$

 $b \leftarrow member(H, i, \ell, h)$
 $u \leftarrow lookup(H, i, \ell, h)$
 $insert(H, i, \ell, h, u)$

- : initializes *H* to be empty
 - check if (i, ℓ, h) is in H
 - find $H(i, \ell, h)$

2

2

: make (i, ℓ, h) map to u in H

Question

Consider the node table T and its inverse H.

- Let ℓ and h be indices of nodes u_{ℓ} and u_{h} .
- Let *i* be the index of variable *x_i*.^{*a*}

Return the index of the node of T corresponding to $x_i \rightarrow u_h, u_\ell$ and expand T and H if needed.

^aIn the variable ordering, this variable occurs before all variables occurring in the subgraphs rooted at ℓ and h.

```
M\kappa[T, H](i, \ell, h)

if \ell = h then

return \ell

else if member(H, i, \ell, h) then

return lookup(H, i, \ell, h)

else

u \leftarrow add(T, i, \ell, h)

insert(H, i, \ell, h)

return u
```

Question

Consider the node table T and its inverse H. Let t be a Boolean expression. Return the node of T corresponding to t.

```
BUILD[T, H](t)
return build(t, 1)
function build(t, i)
if i > n then
if t is false then ret
```

if t is false then return 0 else return 1 else

 $u_0 \leftarrow (t[0/x_i], i+1) \\ u_1 \leftarrow (t[1/x_i], i+1) \\ \text{return } MK(i, u_0, u_1)$

Proposition

For all Boolean binary operators \otimes ,

$$(x \rightarrow t_1, t_0) \otimes (x \rightarrow u_1, u_0) = x \rightarrow t_1 \otimes u_1, t_0 \otimes u_0.$$

Question

Consider the node table T and its inverse H.

- Let u_1 and u_2 be indices of nodes.
- $\bullet~$ Let $\oplus~$ be a Boolean binary operator.

Return the index of the node of T corresponding to $u_1 \oplus u_2$ and expand T and H if needed.

APPLY[T, H](\oplus, u_1, u_2) return $app(u_1, u_2)$ function $app(u_1, u_2)$ if $u_1 \in \{0, 1\}$ and $u_1 \in \{0, 1\}$ then $u \leftarrow u_1 \oplus u_2$ else if $var(u_1) = var(u_2)$ then $u \leftarrow M_K(var(u_1), app(low(u_1), low(u_2)), app(high(u_1), high(u_2)))$ else if $var(u_1) < var(u_2)$ then $u \leftarrow M_K(var(u_1), app(low(u_1), u_2), app(high(u_1), u_2))$ else $u \leftarrow MK(var(u_2), app(u_1, low(u_2)), app(u_1, high(u_2)))$ return *u*

Operations on BDDs

APPLY[T, H](\oplus, u_1, u_2) init(G) return $app(u_1, u_2)$

> function $app(u_1, u_2)$ if $G(u_1, u_2) \neq empty$ then return $G(u_1, u_2)$ if $u_1 \in \{0,1\}$ and $u_1 \in \{0,1\}$ then $u \leftarrow u_1 \oplus u_2$ else if $var(u_1) = var(u_2)$ then $u \leftarrow MK(var(u_1), app(low(u_1), low(u_2)), app(high(u_1), high(u_2)))$ else if $var(u_1) < var(u_2)$ then $u \leftarrow M_K(var(u_1), app(low(u_1), u_2), app(high(u_1), u_2))$ else $u \leftarrow MK(var(u_2), app(u_1, low(u_2)), app(u_1, high(u_2)))$ $G(u_1, u_2) \leftarrow u$

> > 同 ト イヨ ト イヨ ト

return u