Concurrency is Hard

Assume there are eight threads with indices 0, ..., 7. The
threads share an array a of size 800,000. Each thread executes
the following code snippet.

for (int i = 0; i < 100000; i++) {
for (int j = 0; j < 100000; j++) {
alindex + j x 8]++

}

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 1/29

https://wiki.cse.yorku.ca/course/6490A

Concurrency is Hard

Assume there are eight threads with indices 0, ..., 7. The
threads share an array a of size 800,000. Each thread executes
the following code snippet.

for (int i = 0; i < 100000; i++) {
for (int j = 0; j < 100000; j++) {
a[index *x 100000 + j]++

}

Do both snippets give rise to the same number of loads and
stores?

Yes.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 2/29

https://wiki.cse.yorku.ca/course/6490A

Concurrency is Hard

Do the snippets take roughly the same amount of time? I
No. I

Later in the course, we will study memory models.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 3/29

https://wiki.cse.yorku.ca/course/6490A

Concurrent Programming Languages

Can you name some concurrent programming languages? I

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 4/29

https://wiki.cse.yorku.ca/course/6490A

Concurrent Programming Languages

Ada, BPEL, C, C++, Caml, Concurrent ML, CUDA, Erlang,
Java, JavaScript, Linda, Pict, POOL, Occam, Scala

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 5/29

https://wiki.cse.yorku.ca/course/6490A

Concurrent Programming Languages

Most concurrent programming languages consist of a
sequential programming language plus support for

@ thread creation,
@ communication, and
@ synchronization.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 6/29

https://wiki.cse.yorku.ca/course/6490A

Thread Creation

We distinguish between

@ static thread creation
only allowing a predefined number of threads

@ dynamic thread creation
allowing new threads to be created “on-the-fly”

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 7129

https://wiki.cse.yorku.ca/course/6490A

Communication

We distinguish between communication using
@ shared variables

@ messages

e synchronous (blocking send, blocking receive)
e asynchronous (non-blocking send, blocking receive)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 8/29

https://wiki.cse.yorku.ca/course/6490A

Shared variable communication

What is a real life analogue for shared variable communication? I
Message board. I

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 9/29

https://wiki.cse.yorku.ca/course/6490A

Synchronous message passing communication

What is a real life analogue for synchronous message passing
communication?

Phone. I

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 10/29

https://wiki.cse.yorku.ca/course/6490A

Asynchronous message passing communication

What is a real life analogue for asynchronous message passing
communication?

Email. I

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 11/29

https://wiki.cse.yorku.ca/course/6490A

Synchronization

semaphores

locks

monitors

barriers
compare-and-swap

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 12/29

https://wiki.cse.yorku.ca/course/6490A

In this course we will focus on Java.

Java has

dynamic thread creation,
@ shared variable communication,
@ semaphores,

@ locks,

@ monitors,

@ barriers,

@ compare-and-swap,

°

But before diving into the details of Java, let’s study these
concepts first.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 13/29

https://wiki.cse.yorku.ca/course/6490A

A semaphore is a nonnegative integer, say s, with two atomic
operations:

@ V(s): increment s by 1.

@ P(s): decrement s by 1 as soon as the result is
nonnegative.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 14/29

https://wiki.cse.yorku.ca/course/6490A

Edsger Wybe Dijkstra

@ Member of the Royal
Netherlands Academy of
Arts and Sciences (1971)

@ Distinguished Fellow of the
British Computer Society
(1971)

@ Recipient of the Turing Award
(1972)
@ Foreign Honorary Member of

the American Academy of Edsger Wybe Dijkstra
Arts and Sciences (1975) (1830-2002)

source: www.computer.org

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 15/29

https://wiki.cse.yorku.ca/course/6490A

Semaphore

Question
Let three threads share a semaphore s with initial value 0. One
thread executes

P(s); print(1)
Another thread executes
P(s); print(2)

The other thread executes

sleep(1 hour); print(3); V(s)
What will be printed?

31 or 32. \

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 16/29

https://wiki.cse.yorku.ca/course/6490A

The Critical Section Problem

Consider two threads both defined by

while (true)

{

critical section
non—critical section

Mutual exclusion: Make sure that at any moment at most one of
the threads is in its critical section.

Problem

Introduce one or more semaphores and add P- and
V-operations to be above code snippet so that mutual exclusion
is ensured.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 17/29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

The producer-consumer problem (also known as the
bounded-buffer problem) is a classical concurrency problem.

The problem is to synchronize two threads, the producer and
the consumer, who share a common, fixed-size buffer. The
producer repeatedly generates a data item and puts it into the
buffer. At the same time, the consumer removes data items
from the buffer, one item at a time.

The problem is to make sure that the producer will not try to
add data items to a full buffer and that the consumer will not try
to remove data items from an empty buffer.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 18/29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

We assume that the items are integers. We represent the buffer
by means of an array of integers. The array has a fixed size.

int N = 10; // capacity of buffer

The producer and consumer share the following variables.

int[] buffer; // array representing buffer
int next = 0; // index of cell for next item
int size = 0; // number of items stored in buffer

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 19/29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

Producer:

while (true)

int value = produce an item;

buffer[next] = wvalue;

size++;

next = (next + 1) mod N;
Consumer:

while (true)
int value = buffer[(next - size) mod NJ;
size——;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 20/29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

How can we make sure that the producer will not try to add
data items to a full buffer?

v

How can we make sure that the consumer will not try to remove
data items from an empty buffer?

v

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 21/29

https://wiki.cse.yorku.ca/course/6490A

Find a Concurrent Algorithm

Before the lecture on Tuesday September 22,

@ Find a concurrent algorithm in the literature (paper in
journal or conference proceedings).

@ Ask me if the paper and algorithm are appropriate. Email
the doi of the paper describing the algorithm to me.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 22/29

https://wiki.cse.yorku.ca/course/6490A

Assignment 1

Before the lecture on Thursday October 1, email me your
Assignment 1.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 23/29

https://wiki.cse.yorku.ca/course/6490A

