
Concurrency is Hard

Assume there are eight threads with indices 0, . . . , 7. The
threads share an array a of size 800,000. Each thread executes
the following code snippet.

f o r (i n t i = 0 ; i < 100000; i ++) {
f o r (i n t j = 0 ; j < 100000; j ++) {

a [index + j ∗ 8]++
}

}

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 1 / 29

https://wiki.cse.yorku.ca/course/6490A

Concurrency is Hard

Assume there are eight threads with indices 0, . . . , 7. The
threads share an array a of size 800,000. Each thread executes
the following code snippet.

f o r (i n t i = 0 ; i < 100000; i ++) {
f o r (i n t j = 0 ; j < 100000; j ++) {

a [index ∗ 100000 + j]++
}

}

Question
Do both snippets give rise to the same number of loads and
stores?

Answer
Yes.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 2 / 29

https://wiki.cse.yorku.ca/course/6490A

Concurrency is Hard

Question
Do the snippets take roughly the same amount of time?

Answer
No.

Later in the course, we will study memory models.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 3 / 29

https://wiki.cse.yorku.ca/course/6490A

Concurrent Programming Languages

Question
Can you name some concurrent programming languages?

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 4 / 29

https://wiki.cse.yorku.ca/course/6490A

Concurrent Programming Languages

Ada, BPEL, C, C++, Caml, Concurrent ML, CUDA, Erlang,
Java, JavaScript, Linda, Pict, POOL, Occam, Scala

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 5 / 29

https://wiki.cse.yorku.ca/course/6490A

Concurrent Programming Languages

Most concurrent programming languages consist of a
sequential programming language plus support for

thread creation,
communication, and
synchronization.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 6 / 29

https://wiki.cse.yorku.ca/course/6490A

Thread Creation

We distinguish between
static thread creation
only allowing a predefined number of threads
dynamic thread creation
allowing new threads to be created “on-the-fly”

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 7 / 29

https://wiki.cse.yorku.ca/course/6490A

Communication

We distinguish between communication using
shared variables
messages

synchronous (blocking send, blocking receive)
asynchronous (non-blocking send, blocking receive)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 8 / 29

https://wiki.cse.yorku.ca/course/6490A

Shared variable communication

Question
What is a real life analogue for shared variable communication?

Answer
Message board.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 9 / 29

https://wiki.cse.yorku.ca/course/6490A

Synchronous message passing communication

Question
What is a real life analogue for synchronous message passing
communication?

Answer
Phone.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 10 / 29

https://wiki.cse.yorku.ca/course/6490A

Asynchronous message passing communication

Question
What is a real life analogue for asynchronous message passing
communication?

Answer
Email.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 11 / 29

https://wiki.cse.yorku.ca/course/6490A

Synchronization

semaphores
locks
monitors
barriers
compare-and-swap
. . .

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 12 / 29

https://wiki.cse.yorku.ca/course/6490A

Java

In this course we will focus on Java.

Java has
dynamic thread creation,
shared variable communication,
semaphores,
locks,
monitors,
barriers,
compare-and-swap,
. . .

But before diving into the details of Java, let’s study these
concepts first.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 13 / 29

https://wiki.cse.yorku.ca/course/6490A

Semaphore

A semaphore is a nonnegative integer, say s, with two atomic
operations:

V(s): increment s by 1.
P(s): decrement s by 1 as soon as the result is
nonnegative.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 14 / 29

https://wiki.cse.yorku.ca/course/6490A

Edsger Wybe Dijkstra

Member of the Royal
Netherlands Academy of
Arts and Sciences (1971)
Distinguished Fellow of the
British Computer Society
(1971)
Recipient of the Turing Award
(1972)
Foreign Honorary Member of
the American Academy of
Arts and Sciences (1975)

Edsger Wybe Dijkstra
(1930–2002)

source: www.computer.org

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 15 / 29

https://wiki.cse.yorku.ca/course/6490A

Semaphore

Question
Let three threads share a semaphore s with initial value 0. One
thread executes

P(s) ; p r i n t (1)

Another thread executes

P(s) ; p r i n t (2)

The other thread executes

sleep (1 hour) ; p r i n t (3) ; V(s)

What will be printed?

Answer
31 or 32.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 16 / 29

https://wiki.cse.yorku.ca/course/6490A

The Critical Section Problem

Consider two threads both defined by

whi le (t r ue)
{

c r i t i c a l sec t ion
non−c r i t i c a l sec t ion

}

Mutual exclusion: Make sure that at any moment at most one of
the threads is in its critical section.

Problem
Introduce one or more semaphores and add P- and
V-operations to be above code snippet so that mutual exclusion
is ensured.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 17 / 29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

The producer-consumer problem (also known as the
bounded-buffer problem) is a classical concurrency problem.

The problem is to synchronize two threads, the producer and
the consumer, who share a common, fixed-size buffer. The
producer repeatedly generates a data item and puts it into the
buffer. At the same time, the consumer removes data items
from the buffer, one item at a time.

The problem is to make sure that the producer will not try to
add data items to a full buffer and that the consumer will not try
to remove data items from an empty buffer.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 18 / 29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

We assume that the items are integers. We represent the buffer
by means of an array of integers. The array has a fixed size.

int N = 10; // capacity of buffer

The producer and consumer share the following variables.

int[] buffer; // array representing buffer
int next = 0; // index of cell for next item
int size = 0; // number of items stored in buffer

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 19 / 29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

Producer:

while (true)
int value = produce an item;
buffer[next] = value;
size++;
next = (next + 1) mod N;

Consumer:

while (true)
int value = buffer[(next - size) mod N];
size--;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 20 / 29

https://wiki.cse.yorku.ca/course/6490A

The Producer-Consumer Problem

Question
How can we make sure that the producer will not try to add
data items to a full buffer?

Question
How can we make sure that the consumer will not try to remove
data items from an empty buffer?

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 21 / 29

https://wiki.cse.yorku.ca/course/6490A

Find a Concurrent Algorithm

Before the lecture on Tuesday September 22,
Find a concurrent algorithm in the literature (paper in
journal or conference proceedings).
Ask me if the paper and algorithm are appropriate. Email
the doi of the paper describing the algorithm to me.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 22 / 29

https://wiki.cse.yorku.ca/course/6490A

Assignment 1

Before the lecture on Thursday October 1, email me your
Assignment 1.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 23 / 29

https://wiki.cse.yorku.ca/course/6490A

