
The Producer-Consumer Problem

The producer-consumer problem (also known as the
bounded-buffer problem) is a classical concurrency problem.

The problem is to synchronize two threads, the producer and
the consumer, who share a common, fixed-size buffer. The
producer repeatedly generates a data item and puts it into the
buffer. At the same time, the consumer removes data items
from the buffer, one item at a time.

The problem is to make sure that the producer will not try to
add data items to a full buffer and that the consumer will not try
to remove data items from an empty buffer.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 1 / 26

https://wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

We assume that the items are integers. We represent the buffer
by means of an array of integers. The array has a fixed size.

int N = 10; // capacity of buffer

The producer and consumer share the following variables.

int[] buffer; // array representing buffer
int next = 0; // index of cell for next item
int size = 0; // number of items stored in buffer

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 2 / 26

https://wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

Producer:

while (true)
int value = produce an item;
buffer[next] = value;
size++;
next = (next + 1) mod N;

Consumer:

while (true)
int value = buffer[(next - size) mod N];
size--;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 3 / 26

https://wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

Question
How can we make sure that the producer will not try to add
data items to a full buffer?

Answer
Introduce a semaphore that keeps track of the number of
available slots in the buffer.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 4 / 26

https://wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

Question
How can we make sure that the consumer will not try to remove
data items from an empty buffer?

Answer
Introduce a semaphore that keeps track of the number of filled
slots in the buffer.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 5 / 26

https://wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

Question
Are we done?

Answer
No, particular blocks of code need to be executed atomically.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 6 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

The readers and writers problem, due to Courtois, Heymans
and Parnas, is another classical concurrency problem. It
models access to a database. There are many competing
threads wishing to read from and write to the database. It is
acceptable to have multiple threads reading at the same time,
but if one thread is writing then no other thread may either read
or write. The problem is how do you program the reader and
writer threads?

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 7 / 26

https://wiki.cse.yorku.ca/course/6490A


David Parnas

Canadian early pioneer of
software engineering
Ph.D. from Carnegie Mellon
University
Taught at the University of
North Carolina at Chapel Hill,
the Technische Universität
Darmstadt, the University of
Victoria, Queen’s University,
McMaster University, and
University of Limerick
Won numerous awards
including ACM SIGSOFT’s
“Outstanding Research”
award

David Parnas
source: Hubert Baumeister

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 8 / 26

https://wiki.cse.yorku.ca/course/6490A


Pierre-Jacques Courtois

Professor emeritus at the
Catholic University of Leuven

Pierre-Jacques Courtois
source: www.info.ucl.ac.be/~courtois

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 9 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Reader:

. . .
read;
. . .

Writer:

. . .
write;
. . .

Problem
Given a number of reader and writer threads, add
communication (in the form of shared variables) and
synchronization (in the form of semaphores).

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 10 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

The readers and writers share the following variable.

semaphore mutex = 1;

Reader:

P(mutex);
read;
V(mutex);

Writer:

P(mutex);
write;
V(mutex);

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 11 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Does it solve the readers-writers problem?

Answer
Yes!

Question
Is it a satisfactory solution?

Answer
No!

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 12 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Why not?

Answer
It does not allow multiple readers to read at the same time.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 13 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Options
While a writer is writing, readers and writers arrive. Once the
writer is done, can the readers start reading?

Options
While readers are reading, readers and writers arrive. Can the
readers start reading?

No reader is kept waiting unless a writer is writing.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 14 / 26

https://wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Options
While a writer is writing, readers and writers arrive. Once the
writer is done, can the readers start reading?

Options
While readers are reading, readers and writers arrive. Can the
readers start reading?

If a writer wants to write, it writes as soon as possible.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 15 / 26

https://wiki.cse.yorku.ca/course/6490A


The Dining Philosophers Problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each
philosopher has a plate of spaghetti. The spaghetti is so
slippery that a philosopher needs two forks to eat it. The layout
of the table is as follows.

The life of a philosopher consists of alternative periods of
eating and thinking. When philosophers get hungry, they try to
pick up their left and right fork, one at a time, in either order. If
successful in picking up both forks, the philosopher eats for a
while, then puts down the forks and continues to think.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 16 / 26

https://wiki.cse.yorku.ca/course/6490A


The Dining Philosophers Problem

int N = 5;

philosopher(i):
while (true)

think;
takeForks(i);
eat;
putForks(i);

takeForks(i):
...

putForks(i):
...

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 17 / 26

https://wiki.cse.yorku.ca/course/6490A


The Dining Philosophers Problem

int N = 5;
semaphore mutex = 1;

philosopher(i):
while (true)

think;
takeForks(i);
eat;
putForks(i);

takeForks(i):
P(mutex);

putForks(i):
V(mutex);

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 18 / 26

https://wiki.cse.yorku.ca/course/6490A


The Dining Philosophers Problem

Question
Is this solution correct?

Answer
Yes!

Question
Does this solution allow two philosophers to eat at the same
time?

Answer
No!

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 19 / 26

https://wiki.cse.yorku.ca/course/6490A


The Cigarette Smokers Problem

In the Cigarette Smokers Problem, due to Patil, there are an
agent and three smokers. The smokers loop forever, first
waiting for ingredients, then making and smoking cigarettes.
The ingredients are tobacco, paper, and matches. We assume
that the agent has an infinite supply of all three ingredients, and
each smoker has an infinite supply of one of the ingredients;
that is, one smoker has matches, another has paper, and the
third has tobacco.

The agent repeatedly chooses two different ingredients at
random and makes them available to the smokers. Depending
on which ingredients are chosen, the smoker with the
complementary ingredient should pick up both resources and
proceed. For example, if the agent puts out tobacco and paper,
the smoker with the matches should pick up both ingredients,
make a cigarette, and then signal the agent.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 20 / 26

https://wiki.cse.yorku.ca/course/6490A


The Cigarette Smokers Problem

Question
Can we implement the random choices made by the agent
using concurrency?

Answer
Yes, we can introduce a thread for each choice and run them
concurrently.

Question
How can we ensure that at most one of those threads executes
at any time?

Answer
Introduce a binary semaphore.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 21 / 26

https://wiki.cse.yorku.ca/course/6490A


The Cigarette Smokers Problem

Problem
Use semaphores paper and tabacco for the agent who puts
out tobacco and paper, signal the smoker with the matches.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 22 / 26

https://wiki.cse.yorku.ca/course/6490A


The Cigarette Smokers Problem

Shared variables

semaphore agent = 1
semaphore match = 0
semaphore paper = 0
semaphore tabacco = 0

Agent (paper and tabacco):

P(agent); V(tabacco); V(paper)

Agent (paper and matches):

P(agent); V(paper); V(match)

Agent (tabacco and matches):

P(agent); V(tabacco); V(match)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 23 / 26

https://wiki.cse.yorku.ca/course/6490A


The Cigarette Smokers Problem

Smoker (paper):

P(tabacco); P(match); V(agent)

Smoker (matches):

P(tabacco); P(paper); V(agent)

Smoker (tabacco):

P(paper); P(match); V(agent)

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 24 / 26

https://wiki.cse.yorku.ca/course/6490A


The Cigarette Smokers Problem

Question
Is this solution correct?

Answer
No, because it can deadlock.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 25 / 26

https://wiki.cse.yorku.ca/course/6490A


Paper

Make sure that you study the final version of the paper, and not
a preliminary version of the paper posted on the web, as such a
version may contain mistakes.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 26 / 26

https://wiki.cse.yorku.ca/course/6490A

