
Concurrent Object Oriented Languages
Non-blocking synchronization

https://wiki.cse.yorku.ca/course/6490A

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 1 / 21

https://wiki.cse.yorku.ca/course/6490A
https://wiki.cse.yorku.ca/course/6490A


Stack

Question
What are the two operations of the abstract data type Stack?

Answer
push and pop.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 2 / 21

https://wiki.cse.yorku.ca/course/6490A


Stack

We implement the stack as a singly linked list of nodes. Each
node contains an element and a reference to the next node.
The variable top refers to the first node of the linked list and is
initially undefined (null).

Question
How can we implement the push operation?

Answer

new = node with element e;
new.next = top;
top = new;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 3 / 21

https://wiki.cse.yorku.ca/course/6490A


Stack

Question
How can we implement the pop operation?

Answer

if (top == null)
return EMPTY;

else
temp = top;
top = top.next;
return element of temp;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 4 / 21

https://wiki.cse.yorku.ca/course/6490A


A Concurrent Stack

Task
Implement the abstract data type Stack such that multiple
threads can perform the operations push and pop concurrently.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 5 / 21

https://wiki.cse.yorku.ca/course/6490A


Lock the Whole Stack

We use binary semaphore named mutex, which is initially 1,
and a variable top referring to the first node of the linked list,
which is initially undefined (null).

Question
How can we implement the push operation?

Answer

push(e):
P(mutex);
new = node with element e;
new.next = top;
top = new;
V(mutex);

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 6 / 21

https://wiki.cse.yorku.ca/course/6490A


Lock the Whole Stack

Question
How can we implement the pop operation?

Answer

pop:
P(mutex)
if (top == null)

V(mutex);
return EMPTY;

else
temp = top;
top = top.next;
V(mutex);
return element of temp;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 7 / 21

https://wiki.cse.yorku.ca/course/6490A


Lock the Whole Stack

We use a monitor named Stack with a variable named top,
which is initially undefined (null).

Question
How can we implement the push operation?

Answer

Stack : monitor
begin
procedure push(number : int)
begin
new = node with element number;
new.next = top;
top = new;

end

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 8 / 21

https://wiki.cse.yorku.ca/course/6490A


Lock the Whole Stack

Question
How can we implement the pop operation?

Answer

procedure pop(result number : int)
begin
if (top == null)

number = EMPTY;
else
number = element of top;
top = top.next;

end
end

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 9 / 21

https://wiki.cse.yorku.ca/course/6490A


Locks: Number and Granularity

Reducing the number and length of sequentially executed code
sections is crucial to performance. In the context of locking, this
means

reducing the number of locks acquired, and
reducing lock granularity, a measure of the number of
instructions executed while holding a lock.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 10 / 21

https://wiki.cse.yorku.ca/course/6490A


Queue

Question
What are the two operations of the abstract data type Queue?

Answer
enqueue and dequeue.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 11 / 21

https://wiki.cse.yorku.ca/course/6490A


Lock the First and Last Node

We implement the queue as a singly linked list of nodes. Each
node contains an element and a reference to the next node.
The variables head and tail refer to the first and last node of
the linked list and initially refer to a dummy node.

Question
How can we implement the enqueue operation?

Question
How can we implement the dequeue operation?

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 12 / 21

https://wiki.cse.yorku.ca/course/6490A


Memory Contention

This solution suffers from memory contention: an overhead in
traffic in the underlying hardware as a result of multiple threads
concurrently attempting to access the same locations in
memory. If the lock protecting the first/last node is implemented
in a single memory location, as many simple locks are, then in
order to acquire the lock, a thread must repeatedly attempt to
modify that location.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 13 / 21

https://wiki.cse.yorku.ca/course/6490A


Blocking

In any solution that uses locks, if a thread that holds a lock is
delayed, then all other threads attempting to get the lock are
also delayed. Therefore, this (and the previous) solution is
called blocking.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 14 / 21

https://wiki.cse.yorku.ca/course/6490A


Do Not Lock

Instead of locks, use synchronization instructions, such as
compare-and-swap (CAS) and load-linked/store-conditional
(LL/SC). All modern processors provide such instructions.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 15 / 21

https://wiki.cse.yorku.ca/course/6490A


Compare-And-Swap (CAS)

The operation CAS(variable, expected, new) atomically
loads the value of variable,
compares that value to expected,
assigns new to variable if the comparison succeeds, and
returns the old value of variable.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 16 / 21

https://wiki.cse.yorku.ca/course/6490A


Distributed Computing

The graduate course CSE 6117 entitled Distributed Computing
studies non-blocking algorithms and their properties in detail.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 17 / 21

https://wiki.cse.yorku.ca/course/6490A


ABA Problem

The ABA problem occurs during synchronization, when a
location is read twice, has the same value for both reads, and
“value is the same” is used to indicate “nothing has changed”.
However, another thread can execute between the two reads
and change the value, do other work, then change the value
back, thus fooling the first thread into thinking “nothing has
changed” even though the second thread did work that violates
that assumption.

source: wikipedia

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 18 / 21

https://wiki.cse.yorku.ca/course/6490A


ABA Solution

A general solution to the ABA problem is to use a double-length
CAS (e.g. on a 32 bit system, a 64 bit CAS). The second half is
used to hold a counter. The compare part of the operation
compares the previously read value of the variable and the
counter, to the current value and counter. If they match, the
swap occurs - the new value is written - but the new value has
an incremented counter. This means that if ABA has occurred,
although the value of the variable will be the same, the counter
is exceedingly unlikely to be the same (for a 32 bit value, a
multiple of 232 operations would have had to occurred, causing
the counter to wrap and at that moment, the value of the
variable would have to also by chance be the same).

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 19 / 21

https://wiki.cse.yorku.ca/course/6490A


CAS

We use the CAS operation.

Question
How can we implement the push operation?

Answer

push(e):
new = node with element e;
do
temp = top;
new.next = temp;

while (CAS(top, temp, new) != temp);

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 20 / 21

https://wiki.cse.yorku.ca/course/6490A


CAS

We use the CAS operation.

Question
How can we implement the pop operation?

Answer

pop():
do
temp = top;
if (temp == null)

return EMPTY
while (CAS(top, temp, temp.next) != temp);
return element of temp;

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 21 / 21

https://wiki.cse.yorku.ca/course/6490A

