## Loop Invariants and Binary Search

Chapter 4.4, 5.1

### Outline

- ➤ Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

### Outline

- > Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

### **Assertions**

- An assertion is a statement about the state of the data at a specified point in your algorithm.
- An assertion is not a task for the algorithm to perform.
- ➤ You may think of it as a comment that is added for the benefit of the reader.

## **Loop Invariants**

- Binary search can be implemented as an iterative algorithm (it could also be done recursively).
- ➤ Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.

## Other Examples of Assertions

- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns.
- Exit condition: The statement of what must be true to exit a loop.

### **Iterative Algorithms**

Take one step at a time towards the final destination

loop (done)
take step
end loop

# Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.



# Maintain Loop Invariant



- ☐ We start in a safe location (pre-condition)
- ☐ If we are in a safe location, we always step to another safe location (loop invariant)
- Can we be assured that the computation will always be in a safe location?
- By what principle?





# Maintain Loop Invariant

• By <u>Induction</u> the computation will always be in a safe location.



### **Ending The Algorithm**

Define Exit Condition



Termination: With sufficient progress, the exit condition will be met.



- When we exit, we know
  - exit condition is true
  - ☐ loop invariant is true

from these we must establish the post conditions.



### **Definition of Correctness**

<PreCond> & <code> -> <PostCond>

If the input meets the preconditions, then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

### Outline

- ➤ Iterative Algorithms, Assertions and Proofs of Correctness
- > Binary Search: A Case Study

### Define Problem: Binary Search



- ☐ Key 25
- ☐ Sorted List



#### PostConditions

☐ Find key in list (if there).



### **Define Loop Invariant**

- Maintain a sublist.
- ➤ If the key is contained in the original list, then the key is contained in the sublist.





### **Define Step**

- Cut sublist in half.
- Determine which half the key would be in.
- Keep that half.



### **Define Step**

- > It is faster not to check if the middle element is the key.
- Simply continue.



### Make Progress

> The size of the list becomes smaller.



#### **Exit Condition**







If the key is contained in the original list,

then the key is contained in the sublist.

Sublist contains one element.



 If element = key, return associated entry.

Otherwise return false.

### Running Time

The sublist is of size n,  $^{n}/_{2}$ ,  $^{n}/_{4}$ ,  $^{n}/_{8}$ ,...,1 Each step O(1) time.

Total = O(log n)



### **Running Time**

- ➤ Binary search can interact poorly with the memory hierarchy (i.e. <u>caching</u>), because of its random-access nature.
- ➤ It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers.

```
BinarySearch(A[1..n], key)
condition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q > p
   < loop-invariant>: If key is in A[1..n], then key is in A[p..q]
   mid = \left| \frac{p+q}{2} \right|
   if key \leq A[mid]
       q = mid
   else
       p = mid + 1
   end
end
if key = A[p]
   return(p)
else
   return("Key not in list")
end
```

### Simple, right?

- ➤ Although the concept is simple, binary search is notoriously easy to get wrong.
- Why is this?



- The basic idea behind binary search is easy to grasp.
- ➤ It is then easy to write pseudocode that works for a 'typical' case.
- Unfortunately, it is equally easy to write pseudocode that fails on the boundary conditions.

```
\begin{array}{l} \text{if key } \leq A[\text{mid}\,] \\ q = \text{mid} \\ \text{else} \\ p = \text{mid} + 1 \\ \text{end} \end{array} \qquad \begin{array}{l} \text{if key } < A[\text{mid}\,] \\ q = \text{mid} \\ \text{else} \\ \text{or} \\ \text{end} \end{array}
```

What condition will break the loop invariant?



Code:  $key \ge A[mid] \rightarrow select \ right \ half$ Bug!!

```
if key \leq A[mid]

q = mid

else

p = mid + 1

end
```

if key 
$$A[mid]$$

$$q = mid - 1$$
else
$$p = mid$$
end



OK

OK

Not OK!!

$$\operatorname{mid} = \left\lfloor \frac{p+q}{2} \right\rfloor \qquad \text{or} \qquad \operatorname{mid} = \left\lceil \frac{p+q}{2} \right\rceil$$



Shouldn't matter, right?

Select mid = 
$$\left\lceil \frac{p+q}{2} \right\rceil$$



If key  $\leq$  mid, If key > mid, then key is in left half. If key > mid, then key is in right half.



If key  $\leq$  mid, If key > mid, then key is in left half. If key > mid, then key is in right half.



right half.

left half.

$$mid = \left\lfloor \frac{p+q}{2} \right\rfloor$$
if  $key \leq A[mid]$ 

$$q = mid$$
else
$$p = mid + 1$$
end

$$mid = \left\lceil \frac{p+q}{2} \right\rceil$$
if  $key < A[mid]$ 

$$q = mid -1$$
else
$$p = mid$$
end



OK

OK

Not OK!!

## Getting it Right

- How many possible algorithms?
- How many correct algorithms?
- Probability of guessing correctly?

```
mid = \left| \frac{p+q}{2} \right| \qquad or mid = \left\lceil \frac{p+q}{2} \right\rceil ?
if key \leq A[mid] \leftarrow \text{ or if key } \langle A[mid] ?
     q = mid
 else
     p = mid + 1 or
                                    q = mid - 1
 end
                                     else
                                          p = mid
                                     end
```

#### Alternative Algorithm: Less Efficient but More Clear

```
BinarySearch(A[1..n], key)
condition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q \ge p
   < loop-invariant>: If key is in A[1..n], then key is in A[p..q]
   mid = \frac{p+q}{2}
   if key < A[mid]
       q = mid - 1
   else if key > A[mid]
       p = mid + 1
   else
                                    Still \Theta(\log n), but with slightly larger constant.
       return(mid)
   end
end
return("Key not in list")
```

# Card Trick





Thanks to J. Edmonds for this example.





# Which column?







left





## Selected column is placed in the middle





#### I will rearrange the cards





Relax Loop Invariant:
I will remember the same about each column.













right





## Selected column is placed in the middle





#### I will rearrange the cards













left





## Selected column is placed in the middle







#### **Ternary Search**

Loop Invariant: selected card in central subset of cards

```
Size of subset = \lceil n/3^{i-1} \rceil
where n = \text{total number of cards}
i = \text{iteration index}
```

How many iterations are required to guarantee success?

#### **Learning Outcomes**

| From this lecture, you should be able to:                                                                 |
|-----------------------------------------------------------------------------------------------------------|
| ☐ Use the loop invariant method to think about iterative algorithms.                                      |
| ☐ Prove that the loop invariant is established.                                                           |
| ☐ Prove that the loop invariant is maintained in the 'typical' case.                                      |
| Prove that the loop invariant is maintained at all boundary<br>conditions.                                |
| ☐ Prove that progress is made in the 'typical' case                                                       |
| Prove that progress is guaranteed even near termination, so that<br>the exit condition is always reached. |
| Prove that the loop invariant, when combined with the exit<br>condition, produces the post-condition.     |
| ☐ Trade off efficiency for clear, correct code.                                                           |