
Midterm Review

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Data Structures So Far

 Array List
 (Extendable) Array

 Node List
 Singly or Doubly Linked List

 Stack
 Array

 Singly Linked List

 Queue
 Array

 Singly or Doubly Linked List

 Priority Queue
 Unsorted doubly-linked list

 Sorted doubly-linked list

 Heap (array-based)

 Adaptable Priority Queue
 Sorted doubly-linked list with location-

aware entries

 Heap with location-aware entries

 Tree
 Linked Structure

 Binary Tree
 Linked Structure

 Array

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Data Structures & Object-Oriented Design

 Definitions

 Principles of Object-Oriented Design

 Hierarchical Design in Java

 Abstract Data Types & Interfaces

 Casting

 Generics

 Pseudo-Code

Software Engineering
 Software must be:

 Readable and understandable
 Allows correctness to be verified, and software to be easily updated.

 Correct and complete
Works correctly for all expected inputs

 Robust
 Capable of handling unexpected inputs.

 Adaptible
 All programs evolve over time. Programs should be designed so that re-use,

generalization and modification is easy.

 Portable
 Easily ported to new hardware or operating system platforms.

 Efficient
Makes reasonable use of time and memory resources.

Seven Important Functions
 Seven functions that often

appear in algorithm analysis:
 Constant ≈ 1

 Logarithmic ≈ log n

 Linear ≈ n

 N-Log-N ≈ n log n

 Quadratic ≈ n2

 Cubic ≈ n3

 Exponential ≈ 2n

 In a log-log chart, the slope of
the line corresponds to the
growth rate of the function.

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

 properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents
Existential and universal operators
Proof techniques
Basic probability

Some Math to Review

gb Loves(b, g)

gb Loves(b, g)

• existential and universal
operators

Definition of “Big Oh”

, 0 00 : , () ()c n n n f n cg n

()f n

()g n

()cg n

n

() (())f n O g n

Arithmetic Progression

 The running time of
prefixAverages1 is
O(1 2 …n)

 The sum of the first n
integers is n(n 1) 2

 There is a simple visual
proof of this fact

 Thus, algorithm
prefixAverages1 runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Relatives of Big-Oh
big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
 f(n) is Θ(g(n)) if there are constants c1 > 0

and c2 > 0 and an integer constant n0 ≥ 1
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0

Time Complexity of an Algorithm

 O(n2): For any input size n ≥ n0, the algorithm takes
no more than cn2 time on every input.

 Ω(n2): For any input size n ≥ n0, the algorithm takes at
least cn2 time on at least one input.

 θ (n2): Do both.

The time complexity of an algorithm is
the largest time required on any input
of size n. (Worst case analysis.)

Time Complexity of a Problem

 O(n2): Provide an algorithm that solves the problem in no more than
this time.
 Remember: for every input, i.e. worst case analysis!

 Ω(n2): Prove that no algorithm can solve it faster.
 Remember: only need one input that takes at least this long!

 θ (n2): Do both.

The time complexity of a problem is
the time complexity of the fastest
algorithm that solves the problem.

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Arrays

Arrays

Array: a sequence of indexed components with
the following properties:
 array size is fixed at the time of array’s construction

int[] numbers = new int [10];

 array elements are placed contiguously in memory

address of any element can be calculated directly as its offset
from the beginning of the array

 consequently, array components can be efficiently inspected or
updated in O(1) time, using their indices

randomNumber = numbers[5];

numbers[2] = 100;

Arrays in Java

 Since an array is an object, the name of the array is actually a
reference (pointer) to the place in memory where the array is stored.
 reference to an object holds the address of the actual object

 Example [arrays as objects]
int[] A={12, 24, 37, 53, 67};

int[] B=A;

B[3]=5;

 Example [cloning an array]
int[] A={12, 24, 37, 53, 67};

int[] B=A.clone();

B[3]=5;

12 24 37 53 67

12 24 37 5 67

12 24 37 53 67

12 24 37 53 67

12 24 37 53 67

12 24 37 5 67

A
B
A
B

A

B

A

B

Example

Example [2D array in Java = array of arrays]

int[][] nums = new int[5][4];

int[][] nums;

nums = new int[5][];

for (int i=0; i<5; i++) {

nums[i] = new int[4];

}

Array Lists

The Array List ADT (§6.1)

 The Array List ADT extends the notion of array by storing
a sequence of arbitrary objects

 An element can be accessed, inserted or removed by
specifying its rank (number of elements preceding it)

 An exception is thrown if an incorrect rank is specified
(e.g., a negative rank)

The Array List ADT
public interface IndexList<E> {
/** Returns the number of elements in this list */
public int size();
/** Returns whether the list is empty. */
public boolean isEmpty();
/** Inserts an element e to be at index I, shifting all elements after this. */
public void add(int I, E e) throws IndexOutOfBoundsException;
/** Returns the element at index I, without removing it. */
public E get(int i) throws IndexOutOfBoundsException;
/** Removes and returns the element at index I, shifting the elements after this. */
public E remove(int i) throws IndexOutOfBoundsException;
/** Replaces the element at index I with e, returning the previous element at i. */
public E set(int I, E e) throws IndexOutOfBoundsException;
}

Performance
 In the array based implementation
The space used by the data structure is O(n)

size, isEmpty, get and set run in O(1) time
add and remove run in O(n) time

 In an add operation, when the array is full,
instead of throwing an exception, we could
replace the array with a larger one.

 In fact java.util.ArrayList implements this
ADT using extendable arrays that do just
this.

Doubling Strategy Analysis
 We replace the array k = log2 n times
 The total time T(n) of a series of n add(o)

operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k = n 2k + 1 1 = 2n
1

 Thus T(n) is O(n)

 The amortized time of an add operation is
O(1)!

geometric series

1

2

1
4

8

Recall: r i

i0

n

1 r n1

1 r

Stacks

Chapter 5.1

The Stack ADT
 The Stack ADT stores

arbitrary objects
 Insertions and deletions

follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(object): inserts an

element
 object pop(): removes and

returns the last inserted
element

 Auxiliary stack
operations:
 object top(): returns the

last inserted element
without removing it

 integer size(): returns the
number of elements
stored

 boolean isEmpty():
indicates whether no
elements are stored

Array-based Stack

 A simple way of
implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if isEmpty() then

throw EmptyStackException
else

t t - 1
return S[t + 1]

Queues

Chapters 5.2-5.3

Array-Based Queue
 Use an array of size N in a circular fashion
 Two variables keep track of the front and rear

f index of the front element
r index immediately past the rear element

 Array location r is kept empty

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

Queue Operations

We use the
modulo operator
(remainder of
division)

Algorithm size()
return (N f + r) mod N

Algorithm isEmpty()
return (f r)

Q

0 1 2 rf

Q

0 1 2 fr

Note: N f r (r N) f

Linked Lists

Chapters 3.2 – 3.3

Singly Linked List (§ 3.2)

 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

 Each node stores
 element
 link to the next node

next

elem node

A B C D

Running Time

 Adding at the head is O(1)

 Removing at the head is O(1)

 How about tail operations?

Doubly Linked List
 Doubly-linked lists allow more flexible list management (constant

time operations at both ends).

 Nodes store:
 element

 link to the previous node

 link to the next node

 Special trailer and header (sentinel) nodes

prev next

elem

trailerheader nodes/positions

elements

node

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Iterators

 An Iterator is an object that enables you to traverse
through a collection and to remove elements from the
collection selectively, if desired.

 You get an Iterator for a collection by calling its iterator
method.

 Suppose collection is an instance of a Collection.
Then to print out each element on a separate line:

Iterator<E> it = collection.iterator();

while (it.hasNext())

System.out.println(it.next());

Iterable

Collection

Abstract
CollectionQueue List

Abstract
Queue

Priority
Queue Array

List

Abstract
List

Vector

Stack

Linked
List

Abstract
Sequential

List

Interface

Abstract Class

Class

The Java Collections Framework (Ordered Data Types)

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Linear Recursion Design Pattern
 Test for base cases

 Begin by testing for a set of base cases (there should be at least
one).

 Every possible chain of recursive calls must eventually reach a
base case, and the handling of each base case should not use
recursion.

 Recurse once
 Perform a single recursive call. (This recursive step may involve

a test that decides which of several possible recursive calls to
make, but it should ultimately choose to make just one of these
calls each time we perform this step.)

 Define each possible recursive call so that it makes progress
towards a base case.

Binary Recursion

Binary recursion occurs whenever there are
two recursive calls for each non-base case.

Example 1: The Fibonacci Sequence

Formal Definition of Rooted Tree

 A rooted tree may be empty.

 Otherwise, it consists of
 A root node r

 A set of subtrees whose roots are the children of r

subtree

r

B DC

G HE F

I J K

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

subtree

Tree Terminology
 Root: node without parent (A)
 Internal node: node with at least one child

(A, B, C, F)
 External node (a.k.a. leaf): node without

children (E, I, J, K, G, H, D)
 Ancestors of a node: parent,

grandparent, grand-grandparent, etc.
 Descendant of a node: child, grandchild,

grand-grandchild, etc.
 Siblings: two nodes having the same

parent
 Depth of a node: number of ancestors

(excluding self)
 Height of a tree: maximum depth of any

node (3)
 Subtree: tree consisting of a node and its

descendants

A

B DC

G HE F

I J K

Position ADT

The Position ADT models the notion of place
within a data structure where a single object is
stored

 It gives a unified view of diverse ways of storing
data, such as
a cell of an array
a node of a linked list
a node of a tree

 Just one method:
object element(): returns the element stored at the

position

Tree ADT

 We use positions to abstract nodes

 Generic methods:
 integer size()

 boolean isEmpty()

 Iterator iterator()

 Iterable positions()

 Accessor methods:
 position root()

 position parent(p)

 positionIterator children(p)

 Query methods:
 boolean isInternal(p)

 boolean isExternal(p)

 boolean isRoot(p)

 Update method:
 object replace(p, o)

 Additional update methods may
be defined by data structures
implementing the Tree ADT

Preorder Traversal

 A traversal visits the nodes of a
tree in a systematic manner

 In a preorder traversal, a node is
visited before its descendants

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preOrder (w)

Postorder Traversal

 In a postorder traversal, a
node is visited after its
descendants

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Properties of Proper Binary Trees
 Notation

n number of nodes

e number of external nodes

i number of internal nodes

h height

 Properties:
 e = i + 1

 n = 2e - 1

 h ≤ i

 h ≤ (n - 1)/2

 e ≤ 2h

 h ≥ log2e

 h ≥ log2(n + 1) - 1

BinaryTree ADT
The BinaryTree ADT extends the Tree ADT,

i.e., it inherits all the methods of the Tree ADT

Additional methods:
position left(p)

position right(p)

boolean hasLeft(p)

boolean hasRight(p)

Update methods may be defined by data
structures implementing the BinaryTree ADT

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Priority Queue ADT

 A priority queue stores a collection of entries
 Each entry is a pair (key, value)
 Main methods of the Priority Queue ADT

 insert(k, x) inserts an entry with key k and value x
 removeMin() removes and returns the entry with smallest key

 Additional methods
 min() returns, but does not remove, an entry with smallest key
 size(), isEmpty()

 Applications:
 Process scheduling
 Standby flyers

Entry ADT
 An entry in a priority

queue is simply a key-
value pair

 Methods:
 key(): returns the key for this

entry
 value(): returns the value for

this entry

 As a Java interface:
/**
* Interface for a key-value
* pair entry

**/
public interface Entry {

public Object key();
public Object value();

}

Comparator ADT
 A comparator encapsulates the action of comparing two

objects according to a given total order relation
 A generic priority queue uses an auxiliary comparator
 The comparator is external to the keys being compared
 When the priority queue needs to compare two keys, it

uses its comparator
 The primary method of the Comparator ADT:

 compare(a, b):
Returns an integer i such that

 i < 0 if a < b

 i = 0 if a = b
 i > 0 if a > b

 an error occurs if a and b cannot be compared.

Sequence-based Priority Queue

 Implementation with an
unsorted list

 Performance:
 insert takes O(1) time since

we can insert the item at
the beginning or end of the
sequence

 removeMin and min take
O(n) time since we have to
traverse the entire
sequence to find the
smallest key

 Implementation with a
sorted list

 Performance:
 insert takes O(n) time since

we have to find the right
place to insert the item

 removeMin and min take
O(1) time, since the smallest
key is at the beginning

4 5 2 3 1 1 2 3 4 5

Is this tradeoff inevitable?

Heaps

 Goal:
 O(log n) insertion

 O(log n) removal

 Remember that O(log n) is almost as good as O(1)!
 e.g., n = 1,000,000,000 log n ≅ 30

 There are min heaps and max heaps. We will assume
min heaps.

Min Heaps
 A min heap is a binary tree storing keys at its nodes and

satisfying the following properties:
 Heap-order: for every internal node v other than the root

 key(v) ≥ key(parent(v))

 (Almost) complete binary tree: let h be the height of the heap
 for i 0, … , h 1, there are 2i nodes of depth i

at depth h � 1
 the internal nodes are to the left of the external nodes

Only the rightmost internal node may have a single child 2

65

79

 The last node of a heap is the
rightmost node of depth h

Upheap
 After the insertion of a new key k, the heap-order property may be

violated

 Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

 Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

 Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6

1

25

79 6

Downheap
 After replacing the root key with the key k of the last node, the

heap-order property may be violated

 Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

 Note that there are, in general, many possible downward paths –
which one do we choose?

7

65

9

w

? ?

Downheap
 We select the downward path through the minimum-key nodes.

 Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

 Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

Array-based Heap Implementation
 We can represent a heap with n keys

by means of an array of length n 1

 Links between nodes are not explicitly
stored

 The cell at rank 0 is not used
 The root is stored at rank 1.
 For the node at rank i

 the left child is at rank 2i

 the right child is at rank 2i 1

 the parent is at rank floor(i/2)
 if 2i + 1 > n, the node has no right child
 if 2i > n, the node is a leaf

2

65

79

2 5 6 9 7

1 2 3 4 50

 We can construct a heap
storing n keys using a
bottom-up construction with
log n phases

 In phase i, pairs of heaps
with 2i 1 keys are merged
into heaps with 2i11 keys

 Run time for construction is
O(n).

Bottom-up Heap Construction

2i 1 2i 1

2i11

Adaptable
Priority Queues

3 a

5 g 4 e

Additional Methods of the Adaptable Priority Queue ADT

 remove(e): Remove from P and return entry e.

 replaceKey(e,k): Replace with k and return the old key;
an error condition occurs if k is invalid (that is, k cannot
be compared with other keys).

 replaceValue(e,x): Replace with x and return the old
value.

Location-Aware Entries

 A locator-aware entry identifies and tracks the
location of its (key, value) object within a data
structure

List Implementation

 A location-aware list entry is an object storing
 key
 value
 position (or rank) of the item in the list

 In turn, the position (or array cell) stores the entry
 Back pointers (or ranks) are updated during swaps

trailerheader nodes/positions

entries

2 c 4 a 5 d 8 b

Heap Implementation
 A location-aware heap

entry is an object storing
 key

 value

 position of the entry in the
underlying heap

 In turn, each heap position
stores an entry

 Back pointers are updated
during entry swaps

4 a

2 d

6 b

8 g 5 e 9 c

Performance
 Times better than those achievable without location-aware

entries are highlighted in red:
Method Unsorted List Sorted List Heap

size, isEmpty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replaceKey O(1) O(n) O(log n)

replaceValue O(1) O(1) O(1)

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Maps

 A map models a searchable collection of key-value
entries

 The main operations of a map are for searching,
inserting, and deleting items

 Multiple entries with the same key are not allowed
 Applications:

 address book
 student-record database

Performance of a List-Based Map

 Performance:
 put, get and remove take O(n) time since in the worst case

(the item is not found) we traverse the entire sequence to
look for an item with the given key

 The unsorted list implementation is effective only for
small maps

Hash Tables

 A hash table is a data structure that can be used to
make map operations faster.

 While worst-case is still O(n), average case is typically
O(1).

Polynomial Hash Codes
 Polynomial accumulation:

 We partition the bits of the key into a sequence of components of fixed
length (e.g., 8, 16 or 32 bits)

a0 a1 … an1

 We evaluate the polynomial
p(z) a0 a1 z a2 z2 … an1zn1 at a fixed value z, ignoring overflows

 Especially suitable for strings
 Polynomial p(z) can be evaluated in O(n) time using Horner’s rule:

 The following polynomials are successively computed, each from the previous
one in O(1) time

p0(z) an1

pi (z) ani1 zpi1(z) (i 1, 2, …, n 1)
 We have p(z) pn1(z)

Compression Functions

 Division:
 h2 (y) y mod N

 The size N of the hash table is usually chosen to be a prime (on
the assumption that the differences between hash keys y are
less likely to be multiples of primes).

 Multiply, Add and Divide (MAD):
 h2 (y) (ay b) mod p] mod N, where

p is a prime number greater than N

a and b are integers chosen at random from the interval [0, p – 1],
with a > 0.

Collision Handling

 Collisions occur when different elements are mapped to
the same cell

 Separate Chaining:
 Let each cell in the table point to a linked list of entries that map

there

 Separate chaining is simple, but requires additional memory
outside the table

Ø

Ø
Ø

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

Open Addressing: Linear Probing

 Open addressing: the colliding
item is placed in a different cell of
the table

 Linear probing handles collisions
by placing the colliding item in the
next (circularly) available table cell

 Each table cell inspected is
referred to as a “probe”

 Colliding items lump together, so
that future collisions cause a longer
sequence of probes

 Example:
 h(x) x mod 13

 Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
41 18 44 59 32 22 31 73

Open Addressing: Double Hashing
 Double hashing is an alternative open addressing method that uses

a secondary hash function h’(k) in addition to the primary hash
function h(x).

 Suppose that the primary hashing i=h(k) leads to a collision.

 We then iteratively probe the locations
(i + jh’(k)) mod N for j = 0, 1, … , N - 1

 The secondary hash function h’(k) cannot have zero values

 N is typically chosen to be prime.

 Common choice of secondary hash function h’(k):
 h’(k) = q - k mod q, where

 q < N

 q is a prime

 The possible values for h’(k) are
1, 2, … , q

Dictionary ADT
 The dictionary ADT models a

searchable collection of key-
element entries

 The main operations of a
dictionary are searching,
inserting, and deleting items

 Multiple items with the same key
are allowed

 Applications:
 word-definition pairs
 credit card authorizations

 Dictionary ADT methods:
 get(k): if the dictionary has at

least one entry with key k,
returns one of them, else, returns
null

 getAll(k): returns an iterable
collection of all entries with key k

 put(k, v): inserts and returns the
entry (k, v)

 remove(e): removes and returns
the entry e. Throws an exception
if the entry is not in the
dictionary.

 entrySet(): returns an iterable
collection of the entries in the
dictionary

 size(), isEmpty()

A List-Based Dictionary

 A log file or audit trail is a dictionary implemented by means of an
unsorted sequence
 We store the items of the dictionary in a sequence (based on a doubly-

linked list or array), in arbitrary order

 Performance:
 insert takes O(1) time since we can insert the new item at the beginning or

at the end of the sequence

 find and remove take O(n) time since in the worst case (the item is not
found) we traverse the entire sequence to look for an item with the given
key

 The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common operations, while
searches and removals are rarely performed (e.g., historical record of
logins to a workstation)

Hash Table Implementation

 We can also create a hash-table dictionary
implementation.

 If we use separate chaining to handle collisions, then
each operation can be delegated to a list-based
dictionary stored at each hash table cell.

Ordered Maps and Dictionaries
 If keys obey a total order relation, can represent a map or

dictionary as an ordered search table stored in an array.

 Can then support a fast find(k) using binary search.
 at each step, the number of candidate items is halved

 terminates after a logarithmic number of steps

 Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

lm h

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Loop Invariants

 Binary search can be implemented as an iterative
algorithm (it could also be done recursively).

 Loop Invariant: An assertion about the current state
useful for designing, analyzing and proving the
correctness of iterative algorithms.

From the Pre-Conditions on the input instance
we must establish the loop invariant.

Establishing Loop Invariant

Maintain Loop Invariant
• By Induction the computation will
always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

Ending The Algorithm
 Define Exit Condition

 Termination: With sufficient progress,

the exit condition will be met.

 When we exit, we know
 exit condition is true

 loop invariant is true

from these we must establish

the post conditions.

Exit

Exit

0 km Exit

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

