1.4

- **a.** 1280×1024 pixels = 1,310,720 pixels => 1,310,720 \times 3 = 3,932,160 bytes/frame.
- **b.** 3,932,160 bytes \times (8 bits/byte) /100E6 bits/second = 0.31 seconds

1.5

- a. performance of P1 (instructions/sec) = $3 \times 10^9/1.5 = 2 \times 10^9$ performance of P2 (instructions/sec) = $2.5 \times 10^9/1.0 = 2.5 \times 10^9$ performance of P3 (instructions/sec) = $4 \times 10^9/2.2 = 1.8 \times 10^9$
- b. cycles(P1) = 10 × 3 × 10⁹ = 30 × 10⁹
 cycles(P2) = 10 × 2.5 × 10⁹ = 25 × 10⁹
 cycles(P3) = 10 × 4 × 10⁹ = 40 × 10⁹
 No. instructions(P1) = 30 × 10⁹/1.5 = 20 × 10⁹
 No. instructions(P2) = 25 × 10⁹/1 = 25 × 10⁹

No. instructions(P3) = $40 \times 10^9/2.2 = 18.18 \times 10^9$

C. $CPI_{new} = CPI_{old} \times 1.2$, then CPI(P1) = 1.8, CPI(P2) = 1.2, CPI(P3) = 2.6 $f = No. instr. \times CPI/time$, then $f(P1) = 20 \times 10^9 \times 1.8/7 = 5.14 \text{ GHz}$ $f(P2) = 25 \times 10^9 \times 1.2/7 = 4.28 \text{ GHz}$

1.6

a. Class A: 10^5 instr. Class B: 2×10^5 instr. Class C: 5×10^5 instr. Class D: 2×10^5 instr.

Time = No. instr. \times CPI/clock rate

 $f(P1) = 18.18 \times 10^9 \times 2.6/7 = 6.75 \text{ GHz}$

Total time P1 =
$$(10^5 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3)/(2.5 \times 10^9) = 10.4 \times 10^{-4} \text{ s}$$

Total time P2 =
$$(10^5 \times 2 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2)/(3 \times 10^9) = 6.66 \times 10^{-4} \text{ s}$$

CPI = CPU Time x Clock Rate / Instruction Count

$$CPI(P1) = 10.4 \times 10^{-4} \times 2.5 \times 10^{9} / 10^{6} = 2.6$$

$$CPI(P2) = 6.66 \times 10^{-4} \times 3 \times 10^{9} / 10^{6} = 2.0$$

b. clock cycles(P1) =
$$10^5 \times 1 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3$$

= 26×10^5
clock cycles(P2) = $10^5 \times 2 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2$
= 20×10^5

1.7

a. CPI = $T_{exec} \times f/No$. instr.

Compiler A CPI = 1.1

Compiler B CPI = 1.25

b. Clock Rate = No. of Instructions x CPI / CPU Time

$$f_{R}/f_{A} = (\text{No. instr.(B)} \times \text{CPI(B)})/(\text{No. instr.(A)} \times \text{CPI(A)}) = 1.37$$

For a processor, clock rate remains same for all compilers

T_A / T_{new} = No. of Instructions_A x CPI_A / No. of Instructions_{new} x CPI_{new}

$$T_{A}/T_{new} = 1.67$$

$$\rm T_{\rm B}/T_{\rm new}=2.27$$

1.8

1.8.1 The dynamic power for a pulse during the logic transition of $0 \to 1 \to 0$ or $1 \to 0 \to 1$.

Power = $C \times Voltage^2 \times Frequency$

The dynamic power for a single transition during the logic transition of $0 \rightarrow 1$ or $1 \rightarrow 0$.

Power = $2 \times C \times Voltage^2 \times Frequency$

Pentium 4: $C = 2 \times P / V^2 \times f = 2 \times 90 / 1.25^2 \times 3.6 \times 10^9 = 3.2 \times 10^{-8} F$

Core i5 Ivy Bridge: $C = 2 \times P / V^2 \times f = 2 \times 40 / 0.9^2 \times 3.4 \times 10^9 = 2.9 \times 10^{-8} F$

1.8.2 Pentium 4: 10/100 = 10%

Core i5 Ivy Bridge: 30/70 = 42.9%

1.10

1.10.1 die area_{15cm} = wafer area/dies per wafer = $pi*7.5^2 / 84 = 2.10 \text{ cm}^2$

$$yield_{15cm} = 1/(1 + (0.020*2.10/2))^2 = 0.9593$$

die area $_{20cm}$ = wafer area/dies per wafer = pi*10²/100 = 3.14 cm²

$$yield_{20cm} = 1/(1 + (0.031*3.14/2))^2 = 0.9093$$

1.10.2 $\operatorname{cost/die}_{15\text{cm}} = 12/(84*0.9593) = 0.1489$

$$cost/die_{20cm} = 15/(100*0.9093) = 0.1650$$

1.10.3 die area $_{15cm}$ = wafer area/dies per wafer = pi*7.52/(84*1.1) = 1.91 cm²

$$yield_{15cm} = 1/(1 + (0.020*1.15*1.91/2))^2 = 0.9575$$

die area_{20cm} = wafer area/dies per wafer = $pi*10^2/(100*1.1) = 2.86 \text{ cm}^2$

$$yield_{20cm} = 1/(1 + (0.03*1.15*2.86/2))^2 = 0.9082$$