1.4

a. 1280×1024 pixels $=1,310,720$ pixels $=>1,310,720 \times 3=3,932,160$ bytes/frame.
b. 3,932,160 bytes $\times(8$ bits/byte $) / 100 \mathrm{E} 6$ bits/second $=0.31$ seconds

1.5

a. performance of P1 (instructions/sec) $=3 \times 10^{9} / 1.5=2 \times 10^{9}$
performance of P2 (instructions $/ \mathrm{sec}$) $=2.5 \times 10^{9} / 1.0=2.5 \times 10^{9}$
performance of P3 (instructions $/ \mathrm{sec}$) $=4 \times 10^{9} / 2.2=1.8 \times 10^{9}$
b. $\operatorname{cycles}(\mathrm{P} 1)=10 \times 3 \times 10^{9}=30 \times 10^{9}$
cycles $(\mathrm{P} 2)=10 \times 2.5 \times 10^{9}=25 \times 10^{9}$
cycles $(\mathrm{P} 3)=10 \times 4 \times 10^{9}=40 \times 10^{9}$
No. instructions $(P 1)=30 \times 10^{9} / 1.5=20 \times 10^{9}$
No. instructions $(P 2)=25 \times 10^{9} / 1=25 \times 10^{9}$
No. instructions $(P 3)=40 \times 10^{9} / 2.2=18.18 \times 10^{9}$
C. $\mathrm{CPI}_{\text {new }}=\mathrm{CPI}_{\text {old }} \times 1.2$, then $\mathrm{CPI}(\mathrm{P} 1)=1.8, \mathrm{CPI}(\mathrm{P} 2)=1.2, \mathrm{CPI}(\mathrm{P} 3)=2.6$
$f=$ No. instr. \times CPI/time, then
$f(\mathrm{P} 1)=20 \times 10^{9} \times 1.8 / 7=5.14 \mathrm{GHz}$
$f(\mathrm{P} 2)=25 \times 10^{9} \times 1.2 / 7=4.28 \mathrm{GHz}$
$f(\mathrm{P} 1)=18.18 \times 10^{9} \times 2.6 / 7=6.75 \mathrm{GHz}$

1.6

a. Class A: 10^{5} instr. Class B: 2×10^{5} instr. Class C: 5×10^{5} instr. Class D: 2×10^{5} instr.

Time $=$ No. instr. \times CPI/clock rate
Total time P1 $=\left(10^{5}+2 \times 10^{5} \times 2+5 \times 10^{5} \times 3+2 \times 10^{5} \times 3\right) /(2.5 \times$ $\left.10^{9}\right)=10.4 \times 10^{-4} \mathrm{~s}$

Total time P2 $=\left(10^{5} \times 2+2 \times 10^{5} \times 2+5 \times 10^{5} \times 2+2 \times 10^{5} \times 2\right) /$ $\left(3 \times 10^{9}\right)=6.66 \times 10^{-4} \mathrm{~s}$

CPI = CPU Time \times Clock Rate / Instruction Count
$\mathrm{CPI}(\mathrm{P} 1)=10.4 \times 10^{-4} \times 2.5 \times 10^{9} / 10^{6}=2.6$
$\mathrm{CPI}(\mathrm{P} 2)=6.66 \times 10^{-4} \times 3 \times 10^{9} / 10^{6}=2.0$
b. clock $\operatorname{cycles}(\mathrm{P} 1)=10^{5} \times 1+2 \times 10^{5} \times 2+5 \times 10^{5} \times 3+2 \times 10^{5} \times 3$
$=26 \times 10^{5}$
clock cycles $(\mathrm{P} 2)=10^{5} \times 2+2 \times 10^{5} \times 2+5 \times 10^{5} \times 2+2 \times 10^{5} \times 2$
$=20 \times 10^{5}$

1.7

a. $\mathrm{CPI}=\mathrm{T}_{\text {exec }} \times \mathrm{f} /$ No. instr.

Compiler A CPI $=1.1$
Compiler B CPI $=1.25$
b. Clock Rate $=$ No. of Instructions $\times \mathrm{CPI} / \mathrm{CPU}$ Time
$\mathrm{f}_{\mathrm{B}} / \mathrm{f}_{\mathrm{A}}=($ No. instr. $(\mathrm{B}) \times \mathrm{CPI}(\mathrm{B})) /($ No. instr. $(\mathrm{A}) \times \mathrm{CPI}(\mathrm{A}))=1.37$
c. For a processor, clock rate remains same for all compilers
$\mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\text {new }}=$ No. of Instructions $\mathrm{A} \times \mathrm{CPI}_{\mathrm{A}} /$ No. of Instructionsnew $\times \mathrm{CPI}_{\text {new }}$
$\mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\text {new }}=1.67$
$\mathrm{T}_{\mathrm{B}} / \mathrm{T}_{\text {new }}=2.27$

1.8

1.8.1 The dynamic power for a pulse during the logic transition of $0 \rightarrow 1 \rightarrow 0$ or $1 \rightarrow 0 \rightarrow 1$.

Power $=$ C \times Voltage $^{2} \times$ Frequency
The dynamic power for a single transition during the logic transition of $0 \rightarrow 1$ or $1 \rightarrow 0$.
Power $=2 \times$ C \times Voltage $^{2} \times$ Frequency
Pentium 4: $\mathrm{C}=2 \times \mathrm{P} / \mathrm{V}^{2} \times \mathrm{f}=2 \times 90 / 1.25^{2} \times 3.6 \times 10^{9}=3.2 \times 10^{-8} \mathrm{~F}$
Core i5 Ivy Bridge: $\mathrm{C}=2 \times \mathrm{P} / \mathrm{V}^{2} \times \mathrm{f}=2 \times 40 / \mathrm{O}^{2} \times 3.4 \times 10^{9}=2.9 \times 10^{-8} \mathrm{~F}$
1.8.2 Pentium 4: $10 / 100=10 \%$

Core i5 Ivy Bridge: $30 / 70=42.9 \%$

1.10

1.10.1 die area $_{15 \mathrm{~cm}}=$ wafer area/dies per wafer $=\mathrm{pi}^{*} 7.5^{2} / 84=2.10 \mathrm{~cm}^{2}$ yield $_{15 \mathrm{~cm}}=1 /\left(1+\left(0.020^{*} 2.10 / 2\right)\right)^{2}=0.9593$
die area $_{20 \mathrm{~cm}}=$ wafer area/dies per wafer $=\mathrm{pi}^{*} 10^{2} / 100=3.14 \mathrm{~cm}^{2}$
yield ${ }_{20 \mathrm{~cm}}=1 /(1+(0.031 * 3.14 / 2))^{2}=0.9093$
1.10.2 $\mathrm{cost} / \mathrm{die}_{15 \mathrm{~cm}}=12 /\left(84^{\star} 0.9593\right)=0.1489$
cost $/ \mathrm{die}_{20 \mathrm{~cm}}=15 /\left(100^{*} 0.9093\right)=0.1650$
1.10.3 die area ${ }_{15 \mathrm{~cm}}=$ wafer area/dies per wafer $=\mathrm{pi}^{*} 7.5^{2} /\left(84^{*} 1.1\right)=1.91 \mathrm{~cm}^{2}$
yield $_{15 \mathrm{~cm}}=1 /\left(1+\left(0.020^{*} 1.15^{*} 1.91 / 2\right)\right)^{2}=0.9575$
die area $_{20 \mathrm{~cm}}=$ wafer area/dies per wafer $=\mathrm{pi}^{*} 10^{2} /\left(100^{*} 1.1\right)=2.86 \mathrm{~cm}^{2}$
yield $_{20 \mathrm{~cm}}=1 /\left(1+\left(0.03^{*} 1.15^{*} 2.86 / 2\right)\right)^{2}=0.9082$

