

	Computer Organization and Design The Hardware/Software Interface
	Computer Abstractions and Technology - Introduction - Eight Great Ideas in Computer Architecture - Below Your Program - Under the Covers - Technologies for Building Processors and Memory - Performance - The Power Wall - The Switch from Uniprocessors to Multiprocessors - Concluding Remarks

Moore's Law

Moore's Law states that integrated circuit resources double every 18-24 months.
Moore's Law resulted from a 1965 prediction of such growth in IC capacity made by Gordon Moore, one of the founders of Intel.
Moore's Law graph to represen designing for rapid change

Moore's Law			
		of intr	Transistors
	4004	1971	2,250
	8008	1972	2,500
	8080	1974	5,000
	8086	1978	29,000
	286	1982	120,000
	$386{ }^{\text {TM }}$	1985	275,000
	$486{ }^{\text {TM }}$ DX	1989	1,180,000
	Pentium ${ }^{\circledR}$	1993	3,100,000
	Pentium II	1997	7,500,000
	Pentium III	1999	24,000,000
	Pentium 4	2000	42,000,000
	Chapter 1-Computer Abstractions and Technology -7		

Is Moore's Law Ending?

Intel's former chief architect Bob Colwell says: Moore's law will be dead within a decade (August 2013).
The end of Moore's Law is on the horizon, says AMD.
Theoretical physicist Michio Kaku believes
Moore's Law has about 10 years of life left before ever-shrinking transistor sizes smack up against limitations imposed by the laws of thermodynamics and quantum physics (April 2013).

Bell's Law

Bell's Law for the birth and death of computer classes:
Bell's law of computer classes formulated by Gordon Bell in 1972 describes how computing systems (computer classes) form, evolve and may eventually die out.
Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new industry. In 1951, men could walk inside a computer and now, computers are beginning to "walk" inside of us .

The Computer Revolution

Progress in computer technology

- Underpinned by Moore's Law

Makes novel applications feasible

- Computers in Automobiles
- Cell Phones
- Human Genome project
- World Wide Web
- Search Engines

Computers are pervasive Chapter 1 - Computer Abstractions and Technology - 16

The Computer Revolution

Human Genome Project

- a global effort to identify the estimated 30,000 genes in human DNA to figure out the sequences of the chemical bases that make up human DNA to address ethical, legal, and social issues
- The cost of computer equipment to map and analyze human DNA sequences was hundreds of millions of dollars. Since, costs continue to drop, we will soon be able to acquire our own genome, allowing medical care to be tailored to us

Chapter 1 - Computer Abstractions and Technology - 18

The Computer Revolution

Computers in Automobiles

- reduce pollution, improve fuel efficiency via engine controls, and increase safety through blind spot warnings, lane departure warnings, moving object detection, and air bag inflation to protect occupants in a crash
- Cell Phones
- More than half of the planet having mobile phones, allowing person-to-person communication to almost anyone anywhere in the world
M<
Chapter 1-Computer Abstractions and Technology - 17

The Computer Revolution

World Wide Web

- has transformed our society. Web has replaced libraries and newspapers
Search Engines
- As the content of the web grew in size and in value, many people rely on search engines for such a large part of their lives that it would be a hardship to go without them

M<
Chapter 1 - Computer Abstractions and Technology - 19

Classes of Computers

Personal computers
Server computers
Supercomputers, and
Embedded computers

MK Chapter 1 - Computer Abstractions and Technology - 20

Classes of Computers

Personal computers

- Computers designed for use by an individual
- General purpose, variety of software
- Subject to cost/performance tradeoff

Server computers

- Computers used for running larger programs for multiple users, often simultaneously
- Network based
- High capacity, performance, reliability
- Range from small servers to building sized

MK
Chapter 1 - Computer Abstractions and Technology - 21

Classes of Computers

Supercomputers

- Consist thousands of processors and many terabytes of memory
- High-level scientific and engineering calculations
- Highest capability and cost but represent a small fraction of the overall computer market
Embedded computers
- Hidden as components of systems
- Largest class of computers and span the widest range of applications
- Strict power/performance/cost limitations

The PostPC Era

Personal Mobile Devices (PMDs)

- Small wireless devices
- Battery operated
- Connects to the Internet
- Hundreds of dollars

Smart phones, tablets, electronic glasses

The PostPC Era

Cloud computing

- Term Cloud essentially used for the Internet
- Portion of software run on a PMD and portion run in the Cloud
- Warehouse Scale Computers (WSCs)

Big datacenters containing 100,000 servers Amazon and Google cloud vendors

- Software as a Service (SaaS)

Delivers software and data as a service over the Internet
Web search and social networking
M<
Chapter 1 - Computer Abstractions and Technology - 25

What You Will Learn

How programs are translated into machine language

Understanding Performance

Algorithm

- determines number of operations executed

Programming language, compiler, architecture

- determine number of machine instructions executed per operation
Processor and memory system
- determine how fast instructions are executed

I/O system (including OS)

- determine how fast I/O operations are executed

Mく
Chapter 1 - Computer Abstractions and Technology - 27

Eight Great Design Ideas

Design for Moore's Law

- Computer designs can take years, resources available per chip can easily double or quadruple between start and finish of project
- Anticipate where technology will be when design finishes
Use Abstraction to simplify design

- Hide lower-level details to offer a simpler model at higher levels
Make the Common Case Fast

- To enhance performance better than optimizing the rare case

Eight Great Design Ideas

Performance via Parallelism

- A form of computation in which many calculations are carried out simultaneously
Performance via Pipelining
- A particular pattern of parallelism
- A set of data processing elements connected in series, so that the output of one element is the input of the next one
Performance via Prediction
- It can be faster on average to guess and start working rather than wait

M<
Chapter 1 - Computer Abstractions and Technology - 29

Eight Great Design Ideas

Hierarchy of memories

- The closer to the top, the faster and more expensive per bit of memory
- The wider the base of the layer, the bigger the memory

Dependability via redundancy

R-

- Design systems dependable by including redundant components
to help detect failures, and
to take over when failure occurs

Below Your Program
Applications software

- Written in high-level language

Systems software

- Compiler: translates HLL code to machine code
- Operating System:

Handling input/output
Managing memory and storage Scheduling tasks \& sharing resources Hardware

- Processor, memory, I/O controllers

Chapter 1 - Computer Abstractions and Technology - 31

Levels of Program Code

High-level language
Level of abstraction closer to problem domain

- Provides for productivity and portability
Assembly language
- Textual representation of instructions
Hardware representation
- Binary digits (bits)
- Encoded instructions and data

M<

Touchscreen

PostPC device
Supersedes keyboard
and mouse
Resistive and
Capacitive types

- Most tablets, smart phones use capacitive
- Capacitive allows multiple touches simultaneously

M< Chapter 1 - Computer Abstractions and Technology - 34

Through the Looking Glass

LCD screen: picture elements (pixels)
Each coordinate in the frame buffer on the left determines the shade of the corresponding coordinate for the raster scan CRT display on the right.
Pixel $\left(X_{0}, Y_{0}\right)$ contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X_{1}, Y_{1}).

Abstractions

Abstraction helps us deal with complexity

- Hides lower-level details

Instruction Set Architecture (ISA) or Computer Architecture

- The hardware/software interface
- Includes instructions, registers, memory access, I / O, and so on
Operating system hides details of doing I/O, allocating memory from programmers

M<
Chapter 1 - Computer Abstractions and Technology - 39

Networks

Backbone of computer systems
Communication

- Information is exchanged between computers at high speeds
Resource sharing
- Rather than each computer having its own I/O devices, computers on the network can share I/O devices
Nonlocal access
- By connecting computers over long distances, users need not be near the computer they are using

MK
Chapter 1 - Computer Abstractions and Technology - 41

Networks

Local area network (LAN): Ethernet

- A network designed to carry data within a geographically confined area, typically within a single building - 40 gigabits/s
- Wide area network (WAN): the Internet
- A network extended over hundreds of kilometers that can span a continent
Wireless network: WiFi, Bluetooth
- Transmission rates from 1 to100 million bits per second

Chapter 1 - Computer Abstractions and Technology - 42

Semiconductor Technology

Silicon: Semiconductors
Add materials to transform properties:

- Conductors
adding copper or aluminum wire
- Insulators
like plastic or glass
- Switches (transistors)
conduct or insulate under special conditions

Intel Core i7 Wafer

300 mm wafer, 280 chips, 32 nm technology Each chip is 20.7 by 10.5 mm

M< Chapter 1 - Computer Abstractions and Technology - 48

Integrated Circuit Cost

Cost per die $=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times \text { Yield }}$
Dies per wafer \approx Wafer area/Die area
Yield $=\frac{1}{\left(1+(\text { Defects per area } \times \text { Die area/2) })^{2}\right.}$

Nonlinear relation to die area and defect rate

- Wafer cost and area are fixed
- Defect rate determined by manufacturing process
- Die area determined by architecture and circuit design

Defining Performance

Response Time and Throughput

Response time

- How long it takes to do a task

Throughput

- Total work done per unit time
e.g., tasks/transactions/... per hour

How are response time and throughput affected by

- Replacing the processor with a faster version?
- Adding more processors?

We'll focus on response time for now...

Measuring Execution Time

Elapsed time

- Total response time, including all aspects Processing, I/O, OS overhead, idle time
- Determines system performance

CPU time

- Time spent processing a given job Minus I/O time, other jobs' shares
- Includes user CPU time and system CPU time
- Different programs are affected differently by CPU and system performance

Running on servers - I/O performance - hardware and software
Total elapsed time is of interest
Define performance metric and then proceed
M< Chapter 1 - Computer Abstractions and Technology - 53

CPU Clocking

Operation of digital hardware governed by a constant-rate clock

Clock period: duration of a clock cycle

- e.g., 250 ps $=0.25 \mathrm{~ns}=250 \times 10^{-12}$ s
- Clock frequency (rate): cycles per second (Hz)
- e.g., $4.0 \mathrm{GHz}=4000 \mathrm{MHz}=4.0 \times 10^{9} \mathrm{~Hz}=4.0 \times 10^{9} \mathrm{Cps}$

Mく
Chapter 1 - Computer Abstractions and Technology - 54

CPU Time

CPU Time $=$ CPU Clock Cycles \times Clock Cycle Time

$$
=\frac{\text { CPU Clock Cycles }}{\text { Clock Rate }}
$$

Performance can be improved by

- Reducing number of clock cycles
- Increasing clock rate
- Hardware designer must often trade off clock rate against cycle count

Relative Performance

Performance $=1 /$ Execution Time
" X is n times faster than Y "
Performance ${ }_{X} /$ Performance $_{Y}$
$=$ Execution time ${ }_{\mathrm{Y}} /$ Execution time $_{\mathrm{X}}=n$
Example: time taken to run a program

- 10s on A, 15 s on B
- Execution Time ${ }_{\mathrm{B}}$ / Execution Time ${ }_{\mathrm{A}}$ $=15 \mathrm{~s} / 10 \mathrm{~s}=1.5=11 / 2$
- So A is $11 / 2$ times faster than B

MK
Chapter 1 - Computer Abstractions and Technology - 52

[^0]
Instruction Count and CPI

Clock Cycles $=$ Instruction Count \times Cycles Per Instruction CPU Time $=$ Clock Cycles \times Clock Cycle Time
$=$ Instruction Count \times CPI \times Clock Cycle Time $=\frac{\text { Instruction Count } \times \text { CPI }}{\text { Clock Rate }}$
Instruction Count for a program

- Determined by program, ISA, and compiler

Average cycles per instruction

- Determined by CPU hardware
- If different instructions have different CPI

Average CPI gets affected by instruction mix (dynamic frequency of instructions)
Mく Chapter 1 - Computer Abstractions and Technology - 57

CPI in More Detail

If different instruction classes take different numbers of cycles

```
Clock Cycles = 住(CPI }\times\mathrm{ Instruction Count }
```

Weighted average CPI
$\mathrm{CPI}=\frac{\text { Clock Cycles }}{\text { Instruction Count }}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\right.$ CPI $\left._{\mathrm{i}} \times \frac{\text { Instruction } \text { Count }_{\mathrm{i}}}{\text { Instruction Count }}\right)$

Relative frequency
M<
Chapter 1 - Computer Abstractions and Technology - 59

Performance Summary

The :IC Picture
CPU Time $=\frac{\text { Instructions }}{\text { Program }} \times \frac{\text { Clock Cycles }}{\text { Instruction }} \times \frac{\text { Seconds }}{\text { Clock Cycle }}$
Performance depends on

- Algorithm: affects IC, possibly CPI
- Programming language: affects IC, CPI
- Compiler: affects IC, CPI
- Instruction set architecture: affects IC, CPI, T_{c}

Reducing Power

Suppose a new CPU has

- 85% of capacitive load of old CPU
- 15% voltage and 15% frequency reduction
$\frac{\mathrm{P}_{\text {new }}}{\mathrm{P}_{\text {old }}}=\frac{\mathrm{C}_{\text {old }} \times 0.85 \times\left(\mathrm{V}_{\text {old }} \times 0.85\right)^{2} \times \mathrm{F}_{\text {old }} \times 0.85}{\mathrm{C}_{\text {old }} \times \mathrm{V}_{\text {old }}{ }^{2} \times \mathrm{F}_{\text {old }}}=0.85^{4}=0.52$
The power wall
- We can't reduce voltage further
- We can't remove more heat

How else can we improve performance?
M<
Chapter 1 - Computer Abstractions and Technology - 64

Multiprocessors

Multicore microprocessors

- More than one processor per chip

Requires explicitly parallel programming

- Compare with instruction level parallelism Hardware executes multiple instructions at once Hidden from the programmer
- Hard to do (Why?)

Programming for performance
Load balancing
Optimizing communication and synchronization
Mく
Chapter 1 - Computer Abstractions and Technology - 66

Concluding Remarks

Cost/performance is improving

- Due to underlying technology development

Hierarchical layers of abstraction

- In both hardware and software

Instruction set architecture

- The hardware/software interface

Execution time

- The best performance measure

Power is a limiting factor

- Use parallelism to improve performance

Chapter 1 - Computer Abstractions and Technology - 67

[^0]: CPU Time Example
 Computer A: 2GHz clock, 10s CPU time
 Designing Computer B

 - Aim for 6s CPU time
 - Can do faster clock, but causes $1.2 \times$ clock cycles

 How fast must Computer B clock be?

 | Clock Rate $_{\mathrm{B}}$ | $=\frac{\text { Clock Cycles }_{\mathrm{B}}}{\text { CPUTime }_{\mathrm{B}}}=\frac{1.2 \times \text { Clock Cycles }_{A}}{6 \mathrm{~s}}$ |
 | ---: | :--- |
 | Clock Cycles $_{\mathrm{A}}$ | $=$ CPU Time $_{\mathrm{A}} \times$ Clock Rate $_{\mathrm{A}}$ |
 | | $=10 \mathrm{~s} \times 2 \mathrm{GHz}=20 \times 10^{9}$ |
 | Clock Rate $_{\mathrm{B}}$ | $=\frac{1.2 \times 20 \times 10^{9}}{6 \mathrm{~s}}=\frac{24 \times 10^{9}}{6 \mathrm{~s}}=4 \mathrm{GHz}$ |
 | $\mathrm{M}<$ | Chapter $1-$ computer Abstractions and Technology -56 |

