York University
Electrical Engineering and Computer Science

EECS2031: Software Tools
SU2016
Assignment #11

Chapter 22: Exercises

3. Find the error in the following program fragment and show how to fix it.
FILE *fp;

if (fp = fopen(filename, "r")) {
read characters until end-of-file

)

fclose (fp) ;

The argument to fclose must be a file pointer obtained from a call of fopen.
The program fragment calls fclose regardless of whether the call of fopen
succeeded. The call of fclose should be moved inside the if statement:

FILE *fp;

if (fp = fopen(filename, "xr")) {
/* read characters until end-of-file */
fclose (fp);

}

4. Show how each of the following numbers will look if displayed by printf with
%$#012 . 5g as the conversion specification:
(a) 83.7361
(b) 29748.6607
(c) 1054932234.0
(d) 0.0000235218

(a) 00000083.736
(b) 00000029749.
(c) 001.0549e+09
(d) 002.3522e-05

15. Write calls of £seek that perform the following file-positioning operations on a binary file
whose data is arranged in 64-byte “records.” Use £p as the file pointer in each case.
(a) Move to the beginning of record n. (Assume that the first record in the file is record 0.)
(b) Move to the beginning of the last record in the file.
(c) Move forward one record.
(d) Move backward two records.

(@) fseek (fp, n * 641, SEEK SET);
(b) fseek (fp, -64L, SEEK END);
(C) fseek (fp, 64L, SEEK CUR);

(d) fseek (fp, -128L, SEEK CUR);

Chapter 22: Programming Projects

2. Write a program that converts all letters in a file to upper case. (Characters other than letters
shouldn’t be changed.) The program should obtain the file name from the command line and
write its output to stdout.

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

FILE *fp;

int ch;

if (argc !'= 2) {
fprintf (stderr, "usage: toupper file\n");
exit(EXIT_FAILURE);

}

if ((fp = fopen(argv([1l], "xr")) == NULL) {
fprintf (stderr, "Can't open %s\n", argv([1l]);
exit(EXIT_FAILURE);

}

while ((ch = getc(fp)) != EOF)
putchar (toupper (ch)) ;

fclose (fp);
return 0;

3. Write a program named fcat that “concatenates™ any number of files by writing them to
standard output, one after the other, with no break between files. For example, the following
command will display the files £1.c, £2.c, and £3 . c on the screen:

feat floc 2. E3.¢

fcat should issue an error message if any file can’t be opened. Hint: Since it has no more
than one file open at a time, fcat needs only a single file pointer variable. Once it’s fin-
ished with a file, fcat can use the same variable when it opens the next file.

#include <stdio.h>
#include <stdlib.h>

int main (int argc,
{

FILE *fp;

int ch, 1i;

if (argc < 2) {
fprintf (stderr,

char *argvl[])

"usage:

exit (EXIT FAILURE);

}

(1=1;
((fp =

for
if

i < argc;
fopen (argv[i],
fprintf (stderr,

i++) |
"r")) NULL) {
"Can't open %s\n",

exit (EXIT FAILURE);

}
while ((ch =
putchar (ch) ;
fclose (fp);
}

return O;

9. Write a program that merges two files containing part records stored by the inventory.c
program (see Programming Project 8). Assume that the records in each file are sorted by
part number, and that we want the resulting file to be sorted as well. If both files have a part
with the same number, combine the quantities stored in the records. (As a consistency
check, have the program compare the part names and print an error message if they don’t
match.) Have the program obtain the names of the input files and the merged file from the

command line.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NAME LEN 25

struct part {
int number;

getc (fp))

!= EOF)

char name [NAME LEN + 1];

int on_hand;

b

int main (int argc,
{
FILE *in fpl,

*in

char *argvl[])

fp2, *out fp;

int num readl, num read2;

struct part partl,

if (argc !'= 4) {

fprintf (stderr,

part2;

"usage: merge infilel infile?2

exit (EXIT FAILURE);

fcat filename [filename

argvi[i]);

...1\n");

outfile\n");

}

if ((in fpl = fopen(argv[l], "rb")) == NULL) ({
fprintf (stderr, "Can't open %s\n", argv[l]);
exit(EXIT_FAILURE);

}

if ((in_fp2 = fopen(argv[2], "rb")) == NULL) {
fprintf (stderr, "Can't open %s\n", argv[2]);
exit(EXIT_FAILURE);

}

if ((out fp = fopen(argv[3], "wb")) == NULL) {
fprintf (stderr, "Can't open %s\n", argv[3]);
exit (EXIT FAILURE);

}

num readl = fread(&partl, sizeof (struct part), 1, in fpl);
num read2 fread(&part2, sizeof (struct part), 1, in fp2);
while (num readl == 1 && num read2 == 1)
/* successfully read records from both files */
if (partl.number < part2.number) ({
fwrite (&partl, sizeof(struct part), 1, out fp);
num readl = fread(&partl, sizeof (struct part), 1, in fpl);
} else if (partl.number > part2.number) {
fwrite (&part2, sizeof (struct part), 1, out fp);

num read2 = fread(&part2, sizeof(struct part), 1, in fp2);
} else {

/* part numbers are equal */

if (strcmp(partl.name, part2.name) != 0)

fprintf (stderr,
"Names don't match for part %$d; using the name %s\n",
partl.number, partl.name);
partl.on hand += part2.on_hand;
fwrite (&partl, sizeof (struct part), 1, out fp);
num readl = fread(&partl, sizeof(struct part), 1, in fpl);
num read2 = fread(&part2, sizeof(struct part), 1, in fp2);

}

/* copy rest of filel to output file */

while (num readl == 1) {
fwrite (&partl, sizeof(struct part), 1, out fp);
num readl = fread(&partl, sizeof (struct part), 1, in fpl);

}

/* copy rest of file2 to output file */

while (num read2 == 1) {
fwrite (&part2, sizeof (struct part), 1, out fp);
num read2 = fread(&part2, sizeof (struct part), 1, in fp2);

}

fclose(in fpl);
fclose (in_ fp2);
fclose (out fp);
return 0;

