York University
Electrical Engineering and Computer Science

EECS2031: Software Tools
SU2016
Assignment #8

Chapter 14: Exercises

I. Write parameterized macros that compute the following values.

(a) The cube of x.
(b) The remainder when n is divided by 4.
(c) 1if the product of x and y is less than 100, 0 otherwise.

Do your macros always work? If not, describe what arguments would make them fail.

(@) #define CUBE(x) ((x) * (x) * (x))
This macro may not work correctly if x has a side effect.

(b) #define MOD4 (n) ((n) % 4)

(C) #define LT100(x, y) ((x) * (y) < 100)
This macro may not work correctly if x has a side effect that affects vy, or vice-versa.

6. (a) Write a macro DISP (f,x) that expands into a call of printf that displays the value
of the function £ when called with argument x. For example,

DISP(sgrt, 3.0);
should expand into
printf ("sqgrt (%¥g) = %g\n", 3.0, sgrt(3.0));

(b) Write a macro DISP2 (£, x,y) that’s similar to DISP but works for functions with
wo arguments.

(@) #define DISP(f, x) printf (#f "(39) = %g\n", x, f(x))
(b) #define DISP2(f, x, y) printf(#f "(%g, %9) = %g\n", x, y, f(x, y))

9. Write the following parameterized macros.
(a) CHECK (x,y,n) — Has the value | if both x and y fall between 0 and n — 1, inclusive.
(b) MEDIAN (x,y, z) — Finds the median of %, vy, and z.
(¢) POLYNOMIAL (x) — Computes the polynomial 3x° + 2x* — 5x° — 2% + 7x - 6.

(a) #define CHECK(x, y, n) (0 <= (x) && (x) <= (n) - 1 && 0 <= (y) && (y) <=
(n) - 1)

(b)

#define MAX(x, y) ((x) > (y) ? (x) (¥))

#define MIN(x, vy) ((x) < (y) ? (x) (y))

#define MEDIAN (x, y, z) ((x) > (y) 2 ((x) > (z) 2 MAX(y, z) : (x)) : ((x) >
(z) 2?2 (x) : MIN(y, z)))

(C) #define POLYNOMIAL (x) (((((3.0 * (x) + 2.0) * (x) - 5.0) * (x) - 1.0) *
(x) + 7.0) * (x) - 6.0)

14. Show what the following program will look like after preprocessing. Some lines of the pro-
gram may cause compilation errors; find all such errors.

#define N = 10

#tdefine INC(x) x+1

#define SUB (x,y) %X-y
#define SQR(x) ((x)*(x))
#define CUBE(x) (SQR(x)* (x))
#define M1 (x,y) x##y
#idefine M2 (x,y) #x #y

int main(void)

{

Int a1, i, kK.

#ifdef N
1 =0
#else
j = i
#endif

§ =10 & INC(E)
= SUB(G, K)G

= SQR(SQR (7)) ;
CUBE (j) ;
Mi(j, k);
puts(M2(i, j));

o Pis Je
|

1

e
]

#undef SQOR

i = SQR(J);
#define SOR

I =BORIE):

return 0;

}

Blank line
Blank line
Blank line
Blank line
Blank line
Blank line
Blank line

int main (void)
{
int al[= 101, i, 3j, k, m;

Blank line
i=73;
Blank line
Blank line
Blank line

i =10 * J+1;

i= (x,y) x-y(J, k);

1= (>N *) *(3)))) s
1= ((3)*3))*a)):

i = Jjk;

puts("i" "j");

Blank line
i = SQR(J);
Blank line
i= (3);

return 0;

}

Some preprocessors delete white-space characters at the beginning of a line, so your results may
vary. Three lines will cause errors when the program is compiled. Two contain syntax errors:

int a[= 10], i, j, k, m;
i= (x,y) X_y(jl k) ;

The third refers to an undefined variable:
i = jk;

Chapter 15: Exercises

1. Section 15.1 listed several advantages of dividing a program into multiple source files

{a) Describe several other advantages

(b) Describe some disadvantages.

(a) Other advantages of dividing a program into multiple source files:

e Work can be divided among multiple programmers, with each programmer working
independently on one or more files.

e Individual source files can be reviewed and tested independently of the others.

o Alternate versions of a source file can be created — to implement stubs or experiment with
the relative efficiency of different algorithms, for example — and then linked to create
alternate versions of the executable.

e Changes to individual files can be tracked at a more granular level, especially when used
in conjunction with a version control system.

(b) Disadvantages of dividing a program into multiple source files:

e The use of multiple source files in a project, especially one that involves multiple
programmers, requires that design be conducted more carefully before starting
implementation. Although not a disadvantage in and of itself, design changes after
implementation has started must be communicated and applied consistently across the
project.

e Multiple source files increase the possibility of similar functions (especially "helper"
functions) being developed and maintained independently of one another rather than being
reused.

e Anemphasis on reuse, without adequately grouping related functions into larger files, can
result in a proliferation of source files.

5. Suppose that a program consists of three source files—main.c. £1.c, and £2 . c—plus
two header files, £1 . h and £2 . h. All three source files include £1 . h. but only £1 . ¢ and
£2.cinclude £2 . h. Write a makefile for this program, assuming that the compiler is gce

and that the executable file is to be named demo.

demo: main.o fl.o f2.o0
gcc -o demo main.o fl.o f2.o0

main.o: main.c fl.h
gcc -c main.c

fl.o: fl.c f1.h f2.h
gcc -c¢ fl.c

f2.0: f2.c f1.h f2.h
gcc -c f2.c

Chapter 15: Programming Projects

4. Modify the remind.c program of Section 13.5 so that the read line function is in a
separate file named readline. c. Create a header file named readline.h that contains
a prototype for the function and have both remind.c and readline.c include this file.

/* remind.c */

#include <stdio.h>
#include <string.h>
#include "readline.h"

#define MAX REMIND 50 /* maximum number of reminders */
#define MSG LEN 60 /* max length of reminder message */

int main (void)

{
char reminders[MAX REMIND] [MSG LEN+3];
char day str[3], msg str[MSG LEN+1];
int day, i, Jj, num remind = 0O;

}

for (;;) |

if (num remind == MAX REMIND) {
printf ("-- No space left --\n");
break;

}

printf ("Enter day and reminder: ");

scanf ("%2d", &day);

if (day == 0)
break;

sprintf (day str, "%2d", day):;
read line(msg str, MSG LEN);

for (i = 0; i1 < num_remind; i++)
if (strcmp(day str, reminders([i]) < 0)
break;
for (J = num remind; j > 1i; Jj--)

strcpy(reminders[j], reminders[j-1]);

strcpy (reminders[i], day str);
strcat (reminders[i], msg str);

num_ remind++;

}
printf ("\nDay Reminder\n");
for (1 = 0; 1 < num remind; i++)

printf ("™ %s\n", reminders([i]);

return 0;

/* readline.h */

#ifndef READLINE H
#define READLINE H

int read line(char str[], int n);

#endif

/* readline.c */

#include <stdio.h>
#include "readline.h"

int read line(char str[], int n)

{

int ch, i = 0;
while ((ch = getchar()) != '"\n"'")
if (i < n)
str[i++] = ch;
str[i] = '\0';

return 1i;

