York University
Electrical Engineering and Computer Science

EECS2031: Software Tools
SU2016
Assignment #9

Chapter 16: Exercises

3. (a) Show how to declare a tag named complex for a structure with two members, real
and imaginary, of type double.

(b) Use the complex tag to declare variables named c1, c2, and c3.

(¢c) Write a function named make complex that stores its two arguments (both of type
double) in a complex structure, then returns the structure.

(d) Write a function named add complex that adds the corresponding members of its
arguments (both complex structures), then returns the result (another complex structure).

(@)

struct complex {
double real, imaginary;

b
(b)struct complex cl, c2, c3;

(©)

struct complex make complex(double real, double imaginary)
{

struct complex c;

c.real = real;
c.imaginary = imaginary;
return c;

(d)

struct complex add complex(struct complex cl, struct complex c2)
{

struct complex c3;

c3.real = cl.real + c2.real;
c3.imaginary = cl.imaginary + c2.imaginary;
return c3;

5. Write the following functions, assuming that the date structure contains three members:
month. day. and year (all of type int).

(a) int day of_ year (struct date d);
Returns the day of the year (an integer between 1 and 366) that corresponds to the date d.
(b) int compare dates(struct date dl, struct date d2);

Returns —1 if d1 is an earlier date than d2, +1 if d1 is a later date than d2, and 0 if d1 and
d2 are the same.

(@)

int day of year (struct date d)
{

int day, month, days[[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30,
31};

/* leap year adjustment */
if ((d.year $ 4 == 0) && (d.year % 100 != 0 || d.year % 400 == 0))
days[2]++;

day = d.day;

for (month = 1; month < d.month; month++)
day += days[month];

return day;

(b)

int compare dates(struct date dl, struct date d2)
{
if (dl.year != d2.year)
return dl.year < d2.year ? -1 : 1;
if (dl.month != d2.month)
return dl.month < d2.month ? -1 : 1;
if (dl.day != d2.day)
return dl.day < d2.day ? -1 : 1;

return 0;

10. The following structures are designed to store information about objects on a graphics
screen:

struct point { int x, y; }:
struct rectangle { struct point upper left, lower right; };

A point structure stores the x and y coordinates of a point on the screen. A rectangle
structure stores the coordinates of the upper left and lower right corners of a rectangle. Write
functions that perform the following operations on a rectangle structure r passed as an
argument:

(a) Compute the area of r.

(b) Compute the center of r, returning it as a point value. If either the x or y coordinate of
the center isn't an integer, store its truncated value in the point structure.

(¢) Move r by x units in the x direction and y units in the y direction, returning the modi-
fied version of r. (x and y are additional arguments to the function.)

(d) Determine whether a point p lies within r, returning true or false. (p is an addi-
tional argument of type struct point.)

(a)

int area(struct rectangle r)

{
return (r.lower right.x - r.upper left.x) *
(r.lower right.y - r.upper left.y);

(b)
struct point center (struct rectangle r)
{

struct point c;

c.x = (r.upper left.x + r.lower right.x) / 2;
c.y = (r.upper left.y + r.lower right.y) / 2
return c;

’

()
struct rectangle move (struct rectangle r, int x, int y)
{

struct rectangle rl = r;

rl.upper left.x += x;
rl.upper left.y += y;
rl.lower right.x += x;
rl.lower right.y += y;
return rl;

(d)
bool inside(struct rectangle r, struct point p)
{
return r.upper left.x <= p.x && p.x <= r.lower right.x &&
r.upper left.y <= p.y && p.y <= r.lower right.y;

Chapter 16: Programming Projects
2. Modify the inventory . c program of Section 16.3 so that the p (print) operation displays

the parts sorted by part number.

void print (void)
0, num printed;

{
int i1, pos, prev part number

printf ("Part Number Part Name
"Quantity on Hand\n");
{

0; num printed < num parts; num printed++)

(num printed

for
/* find any part that hasn't already been printed */
for (1 = 0; 1 < num parts; i++)
if (inventory[i].number > prev part number) {
pos = 1i;

break;
}
/* find the part with the smallest number that hasn't

already been printed */
for (; 1 < num parts; i++)
(inventory[i] .number < inventory[pos].number &&

if
inventory[i] .number > prev _part number)

pos = 1i;
%$-25s%11d\n", inventory[pos].number,

printf ("$7d
inventory[pos].on_hand);

inventory[pos] .name,

= inventory[pos] .number;

prev_part number

}

Chapter 17: Exercises

1. Having to check the return value of malloc (or any other memory allocation function)
each time we call it can be an annoyance. Write a function named my_malloc that serves
as a “wrapper” for malloc. When we call my _malloc and ask it to allocate n bytes, it in
turn calls malloc, tests to make sure that malloc doesn’t return a null pointer, and then
returns the pointer from malloc. Have my malloc print an error message and terminate
the program if malloc returns a null pointer.

void *my malloc(size t n)
{

void *p;

p = malloc(n);

if (p == NULL) {
printf ("Memory allocation failed\n");
exit(EXIT_FAILURE);

}

return p;

}

3. Write the following function:
int *create array(int n, int initial value);

The function should return a pointer to a dynamically allocated int array with n members,
each of which is initialized to initial walue. The return value should be NULL if the
array can’t be allocated.

int *create array(int n, int initial value)
{

int *a, *p;

a = malloc(n * sizeof (int));
if (a != NULL)
for (p = a; p < a + n; p++)
*p = initial value;
return a;

Chapter 17: Programming Projects

1. Modify the inventory . c program of Section 16.3 so that the inventory array is allo-
cated dynamically and later reallocated when it fills up. Use malloc initially to allocate
enough space for an array of 10 part structures. When the array has no more room for new
parts, use realloc to double its size. Repeat the doubling step each time the array
becomes full.

