
Chapter 1: Introducing C

EECS2031

Software Tools

1

Department of Electrical Engineering

& Computer Science

Lassonde School of Engineering

York University

Chapter 1: Introducing C

• Instructor: Gulzar Khuwaja, PhD, PEng

• Email: khuwaja@cse.yorku.ca

Tel: (416) 736-2100 x 77874

• Course Website:

https://wiki.eecs.yorku.ca/course_archive/2015-16/S/2031/

• Schedule:

Lectures: T 6:00 – 8:00 pm Room LSB 105

Labs: T 4:00 – 6:00 pm Room LAS 1006

Office Hrs: T 8:00 – 9:00 pm Room LAS 2018

2

https://wiki.eecs.yorku.ca/course_archive/2015-16/S/2031/

Chapter 1: Introducing C

Grading Details

• Lab Test 1 20%

• Lab Test 2 20%

• Midterm 20%

• Final 40%

3

Chapter 1: Introducing C

Introduction

Course Content

• C

– Learn how to write and test C programs

• UNIX (LINUX)

– Using Unix tools to automate making and testing

– Unix shell programming

4

Chapter 1: Introducing C

About the course

• By the end of course, the students are expected to

be able to:

– Use the basic functionality of the Unix shell, such as

standard commands and utilities, input/output

redirection, and pipes

– Develop and test shell scripts of significant size

– Develop and test programs written in C programming

language

– Describe the memory management model of C

programming language

5

Chapter 1: Introducing C

Text

• C Programming: A Modern Approach 2nd edition

K.N. King http://knking.com/books/c2/

• The C Programming Language, Kernighan and

Ritchie (K&R)

• Practical Programming in the UNIX Environment

edited by W. Sturzlinger

• Class notes

• Man pages

6

http://knking.com/books/c2/

Chapter 1: Introducing C

WHY C and UNIX

• Wide use, powerful, and fast

• Both started at AT&T Bell Labs

• UNIX was written in assembly, later changed to C

7

Chapter 1: Introducing C

WHY C and UNIX

• The first part of the course is C

• The second part shell script (sh)

• We will start with a quick introduction to Unix to

be able to start the labs

8

Chapter 1: Introducing C

Introduction to Unix

• Please check the tutorial at

http://www.cs.sfu.ca/~ggbaker/reference/unix/

• The first 6 tutorials

9

http://www.cs.sfu.ca/~ggbaker/reference/unix/

Chapter 1: Introducing C

10

Introducing C

Chapter 1

Chapter 1: Introducing C

C – A History

• Ken Thompson wrote original version of UNIX

• Thompson designed B language based on BCPL

• Dennis Ritchie began programming in B

• Bell Labs acquired a PDP-11 for UNIX in 1970

• Ritchie developed an extended version called NB

and then C

• UNIX was rewtitten in C in 1973

11

Chapter 1: Introducing C

C – A History

• In 1978 Brian Kernighan and Dennis Ritchie

Published their “elite” book and became defacto

standard for C known as K&R C

• ANSI completed a standard for C approved in

1989 as ANSI X3.159-1989 known as C89 or C90

(ANSI-C)

• C99 became standard in ISO/IEC 9899:1999

12

Chapter 1: Introducing C

Languages based on C

• C++ basically object oriented C

• Java based on C syntax, much more restrictive +

garbage collection

• C# derived from C++ and Java

• Perl started as scripting language, overtime

adopted many features of C

13

Chapter 1: Introducing C

C: Strengths

• Low level: access to machine level (bytes,

addresses, etc) for systems programming. It

provides operations that correspond to a

computer’s built-in instructions

• Small: limited set of features. Relies heavily

on a library of standard functions

• Permissive: assumes you know what you are

doing so it allows you to a wider degree of

freedom

14

Chapter 1: Introducing C

C: Strengths

• Efficient: run quickly and in limited amounts of

memory

• Portable: early association with Unix and ANSI/ISO

and portability supporting features

• Powerful: large collection of data types and operators

• Flexible: from systems programming to embedded

systems. C imposes very few restrictions

• Standard library contains hundreds of functions for

input/output, string handling, storage allocation, etc

• Integration with UNIX
15

Chapter 1: Introducing C

C: Weaknesses

• Error prone: programming mistakes can not be

detected by compiler for its flexibility like assembly

• Difficult to understand: a number of features are not

found in other languages and often misunderstood

• Difficult to modify: large programs can be hard to

change if not written for maintenance. C lacks

features like classes and packages for program

division

16

Chapter 1: Introducing C

Obfuscated C

• 1990’s best small program of the annual international

obfuscated C code contest

• Program written by Doron O. and Baruch N.

• Prints all solutions to the Eight Queens problem

int v,i,j,k,l,s,a[99];

main(){

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k

=i<s,j+=(v=j<s&&(!k&&!!printf(2+"\n\n%c"-(!l<<!j),"

#Q"[l^v?(l^j)&1:2])&&++l || a[i]<s&&v&&v-i+j&&v+i-

j))&&!(l%=s),v|| (i==j?a[i+=k]=0:++a[i])>=s*k&&++a[-

-i])

;

}

17

Chapter 1: Introducing C

Tips

• Use tools to make programs more reliable

• Use existing code library to reduce errors and save

programming effort

• Adopt a sensible set of coding conventions. It’s

possible to write a code that is all but unreadable

• Avoid tricks and overly complex code. Shortest

solution is often the hardest to comprehend

18

Chapter 2: C Fundamentals

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 2

C Fundamentals

Chapter 2: C Fundamentals

Program: Printing a Pun

#include <stdio.h>

int main(void)

{

printf("To C, or not to C: that is the question.\n");

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 2: C Fundamentals

Compiling and Linking

• Before a program can be executed, three steps are

usually necessary:

– Preprocessing. The preprocessor obeys commands that

begin with # (known as directives)

– Compiling. A compiler then translates the program into

machine instructions (object code).

– Linking. A linker combines the object code produced

by the compiler with any additional code needed to

yield a complete executable program.

• The preprocessor is usually integrated with the

compiler.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 2: C Fundamentals

Compiling and Linking Using cc

• To compile and link the pun.c program under

UNIX, enter the following command in a terminal

or command-line window:

% cc pun.c

The % character is the UNIX prompt.

• Linking is automatic when using cc; no separate

link command is necessary.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 2: C Fundamentals

Compiling and Linking Using cc

• After compiling and linking the program, cc

leaves the executable program in a file named
a.out by default.

• The -o option lets us choose the name of the file

containing the executable program.

• The following command causes the executable
version of pun.c to be named pun:

% cc -o pun pun.c

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 2: C Fundamentals

The GCC Compiler

• GCC is one of the most popular C compilers.

• GCC is supplied with Linux but is available for

many other platforms as well.

• Using this compiler is similar to using cc:

% gcc -o pun pun.c

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 2: C Fundamentals

The General Form of a Simple Program

• Simple C programs have the form

directives

int main(void)

{

statements

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 2: C Fundamentals

The General Form of a Simple Program

• C uses { and } in much the same way that some

other languages use words like begin and end.

• Even the simplest C programs rely on three key

language features:

– Directives

– Functions

– Statements

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 2: C Fundamentals

Directives

• Before a C program is compiled, it is first edited

by a preprocessor.

• Commands intended for the preprocessor are

called directives.

• Example:

#include <stdio.h>

• <stdio.h> is a header containing information

about C’s standard I/O library.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 2: C Fundamentals

Directives

• Directives always begin with a # character.

• By default, directives are one line long; there’s no

semicolon or other special marker at the end.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 2: C Fundamentals

Functions

• A function is a series of statements that have been

grouped together and given a name.

• Library functions are provided as part of the C

implementation.

• A function that computes a value uses a return

statement to specify what value it “returns”:

return x + 1;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 2: C Fundamentals

The main Function

• The main function is mandatory.

• main is special: it gets called automatically when

the program is executed.

• main returns a status code; the value 0 indicates

normal program termination.

• If there’s no return statement at the end of the

main function, compilers may produce a warning

message.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 2: C Fundamentals

Statements

• A statement is a command to be executed when

the program runs.

• pun.c uses only two kinds of statements. One is

the return statement; the other is the function

call.

• Asking a function to perform its assigned task is

known as calling the function.

• pun.c calls printf to display a string:

printf("To C, or not to C: that is the question.\n");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 2: C Fundamentals

Comments

• A comment begins with /* and end with */.

/* This is a comment */

• Comments may appear almost anywhere in a

program, either on separate lines or on the same

lines as other program text.

• Comments may extend over more than one line.

/* Name: pun.c

Purpose: Prints a bad pun.

Author: K. N. King */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 2: C Fundamentals

Comments

• Warning: Forgetting to terminate a comment may cause

the compiler to ignore part of your program:

printf("My "); /* forgot to close this comment...

printf("cat ");

printf("has "); /* so it ends here */

printf("fleas");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 2: C Fundamentals

Comments in C99

• In C99, comments can also be written in the

following way:

// This is a comment

• This style of comment ends automatically at the

end of a line.

• Advantages of // comments:

– Safer: there’s no chance that an unterminated comment

will accidentally consume part of a program.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 2: C Fundamentals

Variables and Assignment

• Most programs need a way to store data

temporarily during program execution.

• These storage locations are called variables.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 2: C Fundamentals

Types

• Every variable must have a type.

• C has a wide variety of types, including int and

float.

• A variable of type int (short for integer) can

store a whole number such as 0, 1, 392, or –2553.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 2: C Fundamentals

Types

• A variable of type float (short for floating-

point) can store much larger numbers than an int

variable.

• Also, a float variable can store numbers with

digits after the decimal point, like 379.125.

• Drawbacks of float variables:

– Slower arithmetic

– Approximate nature of float values

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 2: C Fundamentals

Declarations

• Variables must be declared before they are used.

• Variables can be declared one at a time:

int height;

float profit;

• Alternatively, several can be declared at the same

time:

int height, length, width, volume;

float profit, loss;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 2: C Fundamentals

Declarations

• When main contains declarations, these must

precede statements:

int main(void)

{

declarations

statements

}

• In C99, declarations don’t have to come before

statements.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 2: C Fundamentals

Printing the Value of a Variable

• %d works only for int variables; to print a

float variable, use %f instead.

• By default, %f displays a number with six digits

after the decimal point.

• To force %f to display p digits after the decimal

point, put .p between % and f.

• To print the line

Profit: $2150.48

use the following call of printf:

printf("Profit: $%.2f\n", profit);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 2: C Fundamentals

Initialization

• Some variables are automatically set to zero when

a program begins to execute, but most are not.

• A variable that doesn’t have a default value and

hasn’t yet been assigned a value by the program is

said to be uninitialized.

• Attempting to access the value of an uninitialized

variable may yield an unpredictable result.

• With some compilers, worse behavior—even a

program crash—may occur.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 2: C Fundamentals

Reading Input

• scanf is the C library’s counterpart to printf.

• scanf requires a format string to specify the

appearance of the input data.

• Example of using scanf to read an int value:

scanf("%d", &i);

/* reads an integer; stores into i */

• The & symbol is usually (but not always) required

when using scanf.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

Chapter 2: C Fundamentals

Reading Input

• Reading a float value requires a slightly

different call of scanf:

scanf("%f", &x);

• "%f" tells scanf to look for an input value in

float format (the number may contain a decimal

point, but doesn’t have to).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 2: C Fundamentals

Program: Converting from

Fahrenheit to Celsius
• The celsius.c program prompts the user to

enter a Fahrenheit temperature; it then prints the

equivalent Celsius temperature.

• Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

• The program will allow temperatures that aren’t

integers.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 2: C Fundamentals

celsius.c

/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f

#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)

{

float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");

scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

printf("Celsius equivalent: %.1f\n", celsius);

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 2: C Fundamentals

Identifiers

• Names for variables, functions, macros, and other

entities are called identifiers.

• An identifier may contain letters, digits, and

underscores, but must begin with a letter or

underscore:

times10 get_next_char _done

It’s usually best to avoid identifiers that begin with

an underscore.

• Examples of illegal identifiers:

10times get-next-char

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 2: C Fundamentals

Identifiers

• C is case-sensitive: it distinguishes between

upper-case and lower-case letters in identifiers.

• For example, the following identifiers are all

different:

job joB jOb jOB Job JoB JOb JOB

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

Chapter 3: Formatted Input/Output

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 3

Formatted Input/Output

Chapter 3: Formatted Input/Output

The printf Function

• The printf function must be supplied with a format

string, followed by any values that are to be inserted

into the string during printing:

printf(string, expr1, expr2, …);

• The format string may contain both ordinary

characters and conversion specifications, which begin

with the % character.

• A conversion specification is a placeholder

representing a value to be filled in during printing.

– %d is used for int values

– %f is used for float values

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 3: Formatted Input/Output

The printf Function

• Ordinary characters in a format string are printed as they

appear in the string; conversion specifications are replaced.

• Example:

int i, j;

float x, y;

i = 10;

j = 20;

x = 43.2892f;

y = 5527.0f;

printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:

i = 10, j = 20, x = 43.289200, y = 5527.000000

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 3: Formatted Input/Output

The printf Function

• Compilers aren’t required to check that the

number of conversion specifications in a format

string matches the number of output items.

• Too many conversion specifications:

printf("%d %d\n", i); /*** WRONG ***/

• Too few conversion specifications:

printf("%d\n", i, j); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 3: Formatted Input/Output

The printf Function

• Compilers aren’t required to check that a

conversion specification is appropriate.

• If the programmer uses an incorrect specification,

the program will produce meaningless output:

printf("%f %d\n", i, x); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 3: Formatted Input/Output

Conversion Specifications

• The minimum field width specifies the minimum number

of characters to print.

• If the value to be printed requires fewer characters, it is

right-justified within the field.

 %4d displays the number 123 as •123. (• represents the

space character.)

• If the value to be printed requires more characters, the field

width automatically expands to the necessary size.

• Putting a minus sign causes left justification.

 The specification %-4d would display 123 as 123•.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 3: Formatted Input/Output

Program: Using printf to Format Numbers

• The tprintf.c program uses printf to

display integers and floating-point numbers in

various formats.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 3: Formatted Input/Output

tprintf.c

/* Prints int and float values in various formats */

#include <stdio.h>

int main(void)

{

int i;

float x;

i = 40;

x = 839.21f;

printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);

printf("|%10.3f|%10.3e|%-10g|\n", x, x, x);

return 0;

}

• Output:

|40| 40|40 | 040|

| 839.210| 8.392e+02|839.21 |

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 3: Formatted Input/Output

Escape Sequences

• The \n code that used in format strings is called

an escape sequence.

• Escape sequences enable strings to contain

nonprinting (control) characters and characters

that have a special meaning (such as ").

• A partial list of escape sequences:
Alert (bell) \a

Backspace \b

New line \n

Horizontal tab \t

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 3: Formatted Input/Output

Escape Sequences

• A string may contain any number of escape

sequences:

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

• Executing this statement prints a two-line heading:

Item Unit Purchase

Price Date

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 3: Formatted Input/Output

Escape Sequences

• Another common escape sequence is \", which

represents the " character:

printf("\"Hello!\"");

/* prints "Hello!" */

• To print a single \ character, put two \ characters

in the string:

printf("\\");

/* prints one \ character */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 3: Formatted Input/Output

The scanf Function

• In many cases, a scanf format string will contain

only conversion specifications:

int i, j;

float x, y;

scanf("%d%d%f%f", &i, &j, &x, &y);

• Sample input:

1 -20 .3 -4.0e3

scanf will assign 1, –20, 0.3, and –4000.0 to i,

j, x, and y, respectively.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

	ch01
	ch02
	ch03

