
Chapter 4: Expressions

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 4

Expressions

Chapter 4: Expressions

Operators

• Expressions are built from variables, constants,

and operators.

• C has a rich collection of operators, including

– arithmetic operators

– relational operators

– logical operators

– assignment operators

– increment and decrement operators

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 4: Expressions

Arithmetic Operators

• C provides five binary arithmetic operators:

+ addition

- subtraction

* multiplication

/ division

% remainder

• An operator is binary if it has two operands.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 4: Expressions

Binary Arithmetic Operators

• The value of i % j is the remainder when i is

divided by j.

10 % 3 has the value 1, and 12 % 4 has the value 0.

• Binary arithmetic operators—with the exception
of %—allow either integer or floating-point

operands, with mixing allowed.

• When int and float operands are mixed, the

result has type float.

9 + 2.5f has the value 11.5, and 6.7f / 2 has the

value 3.35.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 4: Expressions

The / and % Operators

• The / and % operators require special care:

– When both operands are integers, / “truncates” the result.

The value of 1 / 2 is 0, not 0.5.

– The % operator requires integer operands; if either

operand is not an integer, the program won’t compile.

– Using zero as the right operand of either / or % causes

undefined behavior.

– In C99, the result of a division is always truncated toward

zero and the value of i % j has the same sign as i.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 4: Expressions

Operator Precedence

• The arithmetic operators have the following

relative precedence:

Highest: + - (unary)

* / %

Lowest: + - (binary)

• Examples:

i + j * k is equivalent to i + (j * k)

-i * -j is equivalent to (-i) * (-j)

+i + j / k is equivalent to (+i) + (j / k)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 4: Expressions

Assignment Operators

• Simple assignment: used for storing a value into a

variable

• Compound assignment: used for updating a value

already stored in a variable

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 4: Expressions

Simple Assignment

• The effect of the assignment v = e is to evaluate

the expression e and copy its value into v.

• e can be a constant, a variable, or a more

complicated expression:

i = 5; /* i is now 5 */

j = i; /* j is now 5 */

k = 10 * i + j; /* k is now 55 */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 4: Expressions

Compound Assignment

• Assignments that use the old value of a variable to

compute its new value are common.

• Example:

i = i + 2;

• Using the += compound assignment operator, we

simply write:

i += 2; /* same as i = i + 2; */

• There are other compound assignment operators,

including the following:

-= *= /= %=

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 4: Expressions

Increment and Decrement Operators

• Two of the most common operations on a variable

are “incrementing” (adding 1) and “decrementing”

(subtracting 1):

i = i + 1;

j = j - 1;

• Incrementing and decrementing can be done using

the compound assignment operators:

i += 1;

j -= 1;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 4: Expressions

Increment and Decrement Operators

• C provides special ++ (increment) and --

(decrement) operators.

• The ++ operator adds 1 to its operand. The --

operator subtracts 1.

• The increment and decrement operators are tricky

to use:

– They can be used as prefix operators (++i and –-i) or

postfix operators (i++ and i--).

– They have side effects: they modify the values of their

operands.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 4: Expressions

Increment and Decrement Operators

• Evaluating the expression ++i (a “pre-increment”)

yields i + 1 and—as a side effect—increments i:

i = 1;

printf("i is %d\n", ++i); /* prints "i is 2" */

printf("i is %d\n", i); /* prints "i is 2" */

• Evaluating the expression i++ (a “post-increment”)

produces the result i, but causes i to be

incremented afterwards:

i = 1;

printf("i is %d\n", i++); /* prints "i is 1" */

printf("i is %d\n", i); /* prints "i is 2" */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 4: Expressions

Increment and Decrement Operators

• The -- operator has similar properties:
i = 1;

printf("i is %d\n", --i); /* prints "i is 0" */

printf("i is %d\n", i); /* prints "i is 0" */

i = 1;

printf("i is %d\n", i--); /* prints "i is 1" */

printf("i is %d\n", i); /* prints "i is 0" */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 5: Selection Statements

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 5

Selection Statements

Chapter 5: Selection Statements

Statements

• Most of C’s statements fall into three categories:

– Selection statements: if and switch

– Iteration statements: while, do, and for

– Jump statements: break and continue

(return also falls in this category.)

• Other C statements:

– Compound statement

– Null statement

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 5: Selection Statements

Relational Operators

• C’s relational operators:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

• These operators produce 0 (false) or 1 (true) when

used in expressions.

• The relational operators can be used to compare

integers and floating-point numbers, with

operands of mixed types allowed.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 5: Selection Statements

Equality Operators

• C provides two equality operators:

== equal to

!= not equal to

• The equality operators are left associative and produce

either 0 (false) or 1 (true) as their result.

• The equality operators have lower precedence than the

relational operators, so the expression

i < j == j < k

is equivalent to

(i < j) == (j < k)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 5: Selection Statements

Logical Operators

• More complicated logical expressions can be built

from simpler ones by using the logical operators:

! logical negation

&& logical and

|| logical or

• The ! operator is unary, while && and || are

binary.

• The logical operators produce 0 or 1 as their result.

• The logical operators treat any nonzero operand as

a true value and any zero operand as a false value.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 5: Selection Statements

The if Statement

• The if statement allows a program to choose

between two alternatives by testing an expression.

• In its simplest form, the if statement has the form

if (expression) statement

• When an if statement is executed, expression is

evaluated; if its value is nonzero, statement is

executed.

• Example:

if (line_num == MAX_LINES)

line_num = 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 5: Selection Statements

The if Statement

• Confusing == (equality) with = (assignment) is

perhaps the most common C programming error.

• The statement

if (i == 0) …

tests whether i is equal to 0.

• The statement

if (i = 0 < j) …

assigns 0 to i, then tests whether the result is

nonzero.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 5: Selection Statements

The if Statement

• Often the expression in an if statement will test

whether a variable falls within a range of values.

• To test whether 0 i < n:

if (0 <= i && i < n) …

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 5: Selection Statements

The else Clause

• An if statement may have an else clause:

if (expression) statement else statement

• The statement that follows the word else is

executed if the expression has the value 0.

• Example:

if (i > j)

max = i;

else

max = j;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 5: Selection Statements

The else Clause

• It’s not unusual for if statements to be nested inside

other if statements:

if (i > j)

if (i > k)

max = i;

else

max = k;

else

if (j > k)

max = j;

else

max = k;

• Aligning each else with the matching if makes the

nesting easier to see.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 5: Selection Statements

Cascaded if Statements

• A “cascaded” if statement is often the best way

to test a series of conditions, stopping as soon as

one of them is true.

• Example:

if (n < 0)

printf("n is less than 0\n");

else

if (n == 0)

printf("n is equal to 0\n");

else

printf("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 5: Selection Statements

Conditional Expressions

• C’s conditional operator allows an expression to

produce one of two values depending on the value

of a condition.

• The conditional operator consists of two symbols
(? and :), which must be used together:

expr1 ? expr2 : expr3

• The operands can be of any type.

• The resulting expression is said to be a

conditional expression.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 5: Selection Statements

Conditional Expressions

• Example:

int i, j, k;

i = 1;

j = 2;

k = i > j ? i : j; /* k is now 2 */

k = (i >= 0 ? i : 0) + j; /* k is now 3 */

• The parentheses are necessary, because the

precedence of the conditional operator is less than

that of the other operators, with the exception of

the assignment operators.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 5: Selection Statements

Conditional Expressions

• Conditional expressions tend to make programs

shorter but harder to understand, so it’s probably

best to use them carefully.

• Conditional expressions are often used in return

statements:

return i > j ? i : j;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 5: Selection Statements

Conditional Expressions

• Calls of printf can sometimes benefit from

condition expressions. Instead of

if (i > j)

printf("%d\n", i);

else

printf("%d\n", j);

we could simply write

printf("%d\n", i > j ? i : j);

• Conditional expressions are also common in

certain kinds of macro definitions.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 5: Selection Statements

The switch Statement

• A cascaded if statement can be used to compare an

expression against a series of values:

if (grade == 4)

printf("Excellent");

else if (grade == 3)

printf("Good");

else if (grade == 2)

printf("Average");

else if (grade == 1)

printf("Poor");

else if (grade == 0)

printf("Failing");

else

printf("Illegal grade");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 5: Selection Statements

The switch Statement

• The switch statement is an alternative:

switch (grade) {

case 4: printf("Excellent");

break;

case 3: printf("Good");

break;

case 2: printf("Average");

break;

case 1: printf("Poor");

break;

case 0: printf("Failing");

break;

default: printf("Illegal grade");

break;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 5: Selection Statements

The switch Statement

• A switch statement may be easier to read than a

cascaded if statement.

• switch statements are often faster than if

statements.

• Most common form of the switch statement:

switch (expression) {

case constant-expression : statements

…

case constant-expression : statements

default : statements

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 5: Selection Statements

The switch Statement

• The word switch must be followed by an integer

expression—the controlling expression—in

parentheses.

• Characters are treated as integers in C and thus can
be tested in switch statements.

• Floating-point numbers and strings don’t qualify,

however.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 5: Selection Statements

The switch Statement

• Each case begins with a label of the form

case constant-expression :

• A constant expression is much like an ordinary

expression except that it can’t contain variables or

function calls.

 5 is a constant expression, and 5 + 10 is a constant

expression, but n + 10 isn’t a constant expression

(unless n is a macro that represents a constant).

• The constant expression in a case label must

evaluate to an integer (characters are acceptable).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 5: Selection Statements

The switch Statement

• After each case label comes any number of

statements.

• No braces are required around the statements.

• The last statement in each group is normally
break.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 5: Selection Statements

The switch Statement

• Duplicate case labels aren’t allowed.

• The order of the cases doesn’t matter, and the default

case doesn’t need to come last.

• Several case labels may precede a group of statements:

switch (grade) {

case 4:

case 3:

case 2:

case 1: printf("Passing");

break;

case 0: printf("Failing");

break;

default: printf("Illegal grade");

break;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 5: Selection Statements

Program: Printing a Date in Legal Form

• Contracts and other legal documents are often dated in

the following way:

Dated this __________ day of __________ , 20__ .

• The date.c program will display a date in this form

after the user enters the date in month/day/year form:
Enter date (mm/dd/yy): 7/19/14

Dated this 19th day of July, 2014.

• The program uses switch statements to add “th” (or

“st” or “nd” or “rd”) to the day, and to print the month

as a word instead of a number.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 5: Selection Statements

date.c

/* Prints a date in legal form */

#include <stdio.h>

int main(void)

{
int month, day, year;

printf("Enter date (mm/dd/yy): ");

scanf("%d /%d /%d", &month, &day, &year);

printf("Dated this %d", day);

switch (day) {

case 1: case 21: case 31:

printf("st"); break;

case 2: case 22:

printf("nd"); break;

case 3: case 23:

printf("rd"); break;

default: printf("th"); break;

}

printf(" day of ");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

Chapter 5: Selection Statements

switch (month) {

case 1: printf("January"); break;

case 2: printf("February"); break;

case 3: printf("March"); break;

case 4: printf("April"); break;

case 5: printf("May"); break;

case 6: printf("June"); break;

case 7: printf("July"); break;

case 8: printf("August"); break;

case 9: printf("September"); break;

case 10: printf("October"); break;

case 11: printf("November"); break;

case 12: printf("December"); break;

}

printf(", 20%.2d.\n", year);

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

	ch04
	ch05

