
Chapter 4: Expressions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 4

Expressions

Chapter 4: Expressions

Operators
• Expressions are built from variables, constants,

and operators.
• C has a rich collection of operators, including

– arithmetic operators
– relational operators
– logical operators
– assignment operators
– increment and decrement operators

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 4: Expressions

Arithmetic Operators
• C provides five binary arithmetic operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• An operator is binary if it has two operands.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 4: Expressions

Binary Arithmetic Operators
• The value of i % j is the remainder when i is

divided by j.
10 % 3 has the value 1, and 12 % 4 has the value 0.

• Binary arithmetic operators—with the exception
of %—allow either integer or floating-point
operands, with mixing allowed.

• When int and float operands are mixed, the
result has type float.

9 + 2.5f has the value 11.5, and 6.7f / 2 has the
value 3.35.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 4: Expressions

The / and % Operators
• The / and % operators require special care:

– When both operands are integers, / “truncates” the result.
The value of 1 / 2 is 0, not 0.5.

– The % operator requires integer operands; if either
operand is not an integer, the program won’t compile.

– Using zero as the right operand of either / or % causes
undefined behavior.

– In C99, the result of a division is always truncated toward
zero and the value of i % j has the same sign as i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 4: Expressions

Operator Precedence
• The arithmetic operators have the following

relative precedence:
Highest: + - (unary)

* / %
Lowest: + - (binary)

• Examples:
i + j * k is equivalent to i + (j * k)
-i * -j is equivalent to (-i) * (-j)
+i + j / k is equivalent to (+i) + (j / k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 4: Expressions

Assignment Operators
• Simple assignment: used for storing a value into a

variable
• Compound assignment: used for updating a value

already stored in a variable

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 4: Expressions

Simple Assignment
• The effect of the assignment v = e is to evaluate

the expression e and copy its value into v.
• e can be a constant, a variable, or a more

complicated expression:
i = 5; /* i is now 5 */
j = i; /* j is now 5 */
k = 10 * i + j; /* k is now 55 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 4: Expressions

Compound Assignment
• Assignments that use the old value of a variable to

compute its new value are common.
• Example:
i = i + 2;

• Using the += compound assignment operator, we
simply write:
i += 2; /* same as i = i + 2; */

• There are other compound assignment operators,
including the following:
-= *= /= %=

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 4: Expressions

Increment and Decrement Operators
• Two of the most common operations on a variable

are “incrementing” (adding 1) and “decrementing”
(subtracting 1):
i = i + 1;
j = j - 1;

• Incrementing and decrementing can be done using
the compound assignment operators:
i += 1;
j -= 1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 4: Expressions

Increment and Decrement Operators
• C provides special ++ (increment) and --

(decrement) operators.
• The ++ operator adds 1 to its operand. The --

operator subtracts 1.
• The increment and decrement operators are tricky

to use:
– They can be used as prefix operators (++i and –-i) or

postfix operators (i++ and i--).
– They have side effects: they modify the values of their

operands.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 4: Expressions

Increment and Decrement Operators
• Evaluating the expression ++i (a “pre-increment”)

yields i + 1 and—as a side effect—increments i:
i = 1;
printf("i is %d\n", ++i); /* prints "i is 2" */
printf("i is %d\n", i); /* prints "i is 2" */

• Evaluating the expression i++ (a “post-increment”)
produces the result i, but causes i to be
incremented afterwards:
i = 1;
printf("i is %d\n", i++); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 2" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 4: Expressions

Increment and Decrement Operators
• The -- operator has similar properties:

i = 1;
printf("i is %d\n", --i); /* prints "i is 0" */
printf("i is %d\n", i); /* prints "i is 0" */
i = 1;
printf("i is %d\n", i--); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 0" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 5: Selection Statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 5

Selection Statements

Chapter 5: Selection Statements

Statements
• Most of C’s statements fall into three categories:

– Selection statements: if and switch
– Iteration statements: while, do, and for
– Jump statements: break and continue

(return also falls in this category.)
• Other C statements:

– Compound statement
– Null statement

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 5: Selection Statements

Relational Operators
• C’s relational operators:
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• These operators produce 0 (false) or 1 (true) when
used in expressions.

• The relational operators can be used to compare
integers and floating-point numbers, with
operands of mixed types allowed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 5: Selection Statements

Equality Operators
• C provides two equality operators:
== equal to
!= not equal to

• The equality operators are left associative and produce
either 0 (false) or 1 (true) as their result.

• The equality operators have lower precedence than the
relational operators, so the expression
i < j == j < k
is equivalent to
(i < j) == (j < k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 5: Selection Statements

Logical Operators
• More complicated logical expressions can be built

from simpler ones by using the logical operators:
! logical negation
&& logical and
|| logical or

• The ! operator is unary, while && and || are
binary.

• The logical operators produce 0 or 1 as their result.
• The logical operators treat any nonzero operand as

a true value and any zero operand as a false value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 5: Selection Statements

The if Statement
• The if statement allows a program to choose

between two alternatives by testing an expression.
• In its simplest form, the if statement has the form
if (expression) statement

• When an if statement is executed, expression is
evaluated; if its value is nonzero, statement is
executed.

• Example:
if (line_num == MAX_LINES)
line_num = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 5: Selection Statements

The if Statement
• Confusing == (equality) with = (assignment) is

perhaps the most common C programming error.
• The statement
if (i == 0) …
tests whether i is equal to 0.

• The statement
if (i = 0 < j) …
assigns 0 to i, then tests whether the result is
nonzero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 5: Selection Statements

The if Statement
• Often the expression in an if statement will test

whether a variable falls within a range of values.
• To test whether 0 i < n:
if (0 <= i && i < n) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 5: Selection Statements

The else Clause
• An if statement may have an else clause:
if (expression) statement else statement

• The statement that follows the word else is
executed if the expression has the value 0.

• Example:
if (i > j)
max = i;

else
max = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 5: Selection Statements

The else Clause
• It’s not unusual for if statements to be nested inside

other if statements:
if (i > j)

if (i > k)
max = i;

else
max = k;

else
if (j > k)

max = j;
else

max = k;
• Aligning each else with the matching if makes the

nesting easier to see.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 5: Selection Statements

Cascaded if Statements
• A “cascaded” if statement is often the best way

to test a series of conditions, stopping as soon as
one of them is true.

• Example:
if (n < 0)
printf("n is less than 0\n");

else
if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 5: Selection Statements

Conditional Expressions
• C’s conditional operator allows an expression to

produce one of two values depending on the value
of a condition.

• The conditional operator consists of two symbols
(? and :), which must be used together:
expr1 ? expr2 : expr3

• The operands can be of any type.
• The resulting expression is said to be a

conditional expression.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 5: Selection Statements

Conditional Expressions
• Example:

int i, j, k;

i = 1;
j = 2;
k = i > j ? i : j; /* k is now 2 */
k = (i >= 0 ? i : 0) + j; /* k is now 3 */

• The parentheses are necessary, because the
precedence of the conditional operator is less than
that of the other operators, with the exception of
the assignment operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 5: Selection Statements

Conditional Expressions
• Conditional expressions tend to make programs

shorter but harder to understand, so it’s probably
best to use them carefully.

• Conditional expressions are often used in return
statements:
return i > j ? i : j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 5: Selection Statements

Conditional Expressions
• Calls of printf can sometimes benefit from

condition expressions. Instead of
if (i > j)
printf("%d\n", i);

else
printf("%d\n", j);

we could simply write
printf("%d\n", i > j ? i : j);

• Conditional expressions are also common in
certain kinds of macro definitions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 5: Selection Statements

The switch Statement
• A cascaded if statement can be used to compare an

expression against a series of values:
if (grade == 4)

printf("Excellent");
else if (grade == 3)

printf("Good");
else if (grade == 2)

printf("Average");
else if (grade == 1)

printf("Poor");
else if (grade == 0)

printf("Failing");
else

printf("Illegal grade");
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 5: Selection Statements

The switch Statement
• The switch statement is an alternative:

switch (grade) {
case 4: printf("Excellent");

break;
case 3: printf("Good");

break;
case 2: printf("Average");

break;
case 1: printf("Poor");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 5: Selection Statements

The switch Statement
• A switch statement may be easier to read than a

cascaded if statement.
• switch statements are often faster than if

statements.
• Most common form of the switch statement:
switch (expression) {
case constant-expression : statements
…
case constant-expression : statements
default : statements

}
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 5: Selection Statements

The switch Statement
• The word switch must be followed by an integer

expression—the controlling expression—in
parentheses.

• Characters are treated as integers in C and thus can
be tested in switch statements.

• Floating-point numbers and strings don’t qualify,
however.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 5: Selection Statements

The switch Statement
• Each case begins with a label of the form
case constant-expression :

• A constant expression is much like an ordinary
expression except that it can’t contain variables or
function calls.

5 is a constant expression, and 5 + 10 is a constant
expression, but n + 10 isn’t a constant expression
(unless n is a macro that represents a constant).

• The constant expression in a case label must
evaluate to an integer (characters are acceptable).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 5: Selection Statements

The switch Statement
• After each case label comes any number of

statements.
• No braces are required around the statements.
• The last statement in each group is normally
break.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 5: Selection Statements

The switch Statement
• Duplicate case labels aren’t allowed.
• The order of the cases doesn’t matter, and the default

case doesn’t need to come last.
• Several case labels may precede a group of statements:

switch (grade) {
case 4:
case 3:
case 2:
case 1: printf("Passing");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 5: Selection Statements

Program: Printing a Date in Legal Form
• Contracts and other legal documents are often dated in

the following way:
Dated this __________ day of __________ , 20__ .

• The date.c program will display a date in this form
after the user enters the date in month/day/year form:
Enter date (mm/dd/yy): 7/19/14
Dated this 19th day of July, 2014.

• The program uses switch statements to add “th” (or
“st” or “nd” or “rd”) to the day, and to print the month
as a word instead of a number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 5: Selection Statements

date.c
/* Prints a date in legal form */
#include <stdio.h>
int main(void)
{
int month, day, year;
printf("Enter date (mm/dd/yy): ");
scanf("%d /%d /%d", &month, &day, &year);
printf("Dated this %d", day);
switch (day) {

case 1: case 21: case 31:
printf("st"); break;

case 2: case 22:
printf("nd"); break;

case 3: case 23:
printf("rd"); break;

default: printf("th"); break;
}
printf(" day of ");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 5: Selection Statements

switch (month) {
case 1: printf("January"); break;
case 2: printf("February"); break;
case 3: printf("March"); break;
case 4: printf("April"); break;
case 5: printf("May"); break;
case 6: printf("June"); break;
case 7: printf("July"); break;
case 8: printf("August"); break;
case 9: printf("September"); break;
case 10: printf("October"); break;
case 11: printf("November"); break;
case 12: printf("December"); break;

}
printf(", 20%.2d.\n", year);
return 0;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

