
Chapter 6: Loops

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 6

Loops

Chapter 6: Loops

Iteration Statements

• C’s iteration statements are used to set up loops.

• A loop is a statement whose job is to repeatedly

execute some other statement (the loop body).

• In C, every loop has a controlling expression.

• Each time the loop body is executed (an iteration

of the loop), the controlling expression is

evaluated.

– If the expression is true (has a value that’s not zero) the

loop continues to execute.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 6: Loops

Iteration Statements

• C provides three iteration statements:

– The while statement is used for loops whose

controlling expression is tested before the loop body is

executed.

– The do statement is used if the expression is tested

after the loop body is executed.

– The for statement is convenient for loops that

increment or decrement a counting variable.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 6: Loops

The while Statement

• Using a while statement is the easiest way to set

up a loop.

• The while statement has the form

while (expression) statement

• expression is the controlling expression; statement

is the loop body.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 6: Loops

Program: Summing a Series of Numbers

• The sum.c program sums a series of integers

entered by the user:

This program sums a series of integers.

Enter integers (0 to terminate): 8 23 71 5 0

The sum is: 107

• The program will need a loop that uses scanf to

read a number and then adds the number to a

running total.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 6: Loops

sum.c

/* Sums a series of numbers */

#include <stdio.h>

int main(void)

{

int n, sum = 0;

printf("This program sums a series of integers.\n");

printf("Enter integers (0 to terminate): ");

scanf("%d", &n);

while (n != 0) {

sum += n;

scanf("%d", &n);

}

printf("The sum is: %d\n", sum);

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 6: Loops

The do Statement

• General form of the do statement:

do statement while (expression) ;

• When a do statement is executed, the loop body is

executed first, then the controlling expression is

evaluated.

• If the value of the expression is nonzero, the loop

body is executed again and then the expression is

evaluated once more.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 6: Loops

Program: Calculating the

Number of Digits in an Integer
• The numdigits.c program calculates the

number of digits in an integer entered by the user:

Enter a nonnegative integer: 60

The number has 2 digit(s).

• The program will divide the user’s input by 10

repeatedly until it becomes 0; the number of

divisions performed is the number of digits.

• Writing this loop as a do statement is better than

using a while statement, because every integer—

even 0—has at least one digit.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 6: Loops

numdigits.c

/* Calculates the number of digits in an integer */

#include <stdio.h>

int main(void)

{

int digits = 0, n;

printf("Enter a nonnegative integer: ");

scanf("%d", &n);

do {

n /= 10;

digits++;

} while (n > 0);

printf("The number has %d digit(s).\n", digits);

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 6: Loops

The for Statement

• The for statement is ideal for loops that have a

“counting” variable, but it’s versatile enough to be

used for other kinds of loops as well.

• General form of the for statement:

for (expr1 ; expr2 ; expr3) statement

expr1, expr2, and expr3 are expressions.

• Example:

for (i = 10; i > 0; i--)

printf("T minus %d and counting\n", i);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 6: Loops

The Comma Operator

• On occasion, a for statement may need to have

two (or more) initialization expressions or one that

increments several variables each time through the

loop.

• This effect can be accomplished by using a

comma expression as the first or third expression
in the for statement.

• A comma expression has the form

expr1 , expr2

where expr1 and expr2 are any two expressions.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 6: Loops

The Comma Operator

• The comma operator makes it possible to “glue” two

expressions together to form a single expression.

• Certain macro definitions can benefit from the comma

operator.

• The for statement is the only other place where the

comma operator is likely to be found.

• Example:

for (sum = 0, i = 1; i <= N; i++)

sum += i;

• With additional commas, the for statement could

initialize more than two variables.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 6: Loops

The break Statement

• The break statement can transfer control out of a

switch statement, but it can also be used to jump
out of a while, do, or for loop.

• A loop that checks whether a number n is prime

can use a break statement to terminate the loop

as soon as a divisor is found:

for (d = 2; d < n; d++)

if (n % d == 0)

break;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 6: Loops

The break Statement

• After the loop has terminated, an if statement can

be used to determine whether termination was
premature (hence n isn’t prime) or normal (n is

prime):

if (d < n)

printf("%d is divisible by %d\n", n, d);

else

printf("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 6: Loops

The continue Statement

• The continue statement is similar to break:

– break transfers control just past the end of a loop.

– continue transfers control to a point just before the

end of the loop body.

• With break, control leaves the loop; with

continue, control remains inside the loop.

• There’s another difference between break and

continue: break can be used in switch

statements and loops (while, do, and for),

whereas continue is limited to loops.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 6: Loops

The continue Statement

• A loop that uses the continue statement to sum

10 non-zero numbers:

n = 0;

sum = 0;

while (n < 10) {

scanf("%d", &i);

if (i == 0)

continue;

sum += i;

n++;

/* continue jumps to here */

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 6: Loops

The continue Statement

• The same loop written without using continue:

n = 0;

sum = 0;

while (n < 10) {

scanf("%d", &i);

if (i != 0) {

sum += i;

n++;

}

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 6: Loops

The Null Statement

• A statement can be null—free from symbols

except for the semicolon at the end.

• The null statement is primarily good for one thing:

writing loops whose bodies are empty.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 6: Loops

The Null Statement

• Consider the following prime-finding loop:

for (d = 2; d < n; d++)

if (n % d == 0)

break;

• If the n % d == 0 condition is moved into the

loop’s controlling expression, the body of the loop

becomes empty:

for (d = 2; d < n && n % d != 0; d++)

; /* empty loop body */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 7: Basic Types

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 7

Basic Types

Chapter 7: Basic Types

Basic Types

• C’s basic (built-in) types:

– Integer types, including long integers, short integers,

and unsigned integers

– Floating types (float, double, and long double)

– char

– _Bool (C99)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 7: Basic Types

Signed and Unsigned Integers

• By default, integer variables are signed in C—the

leftmost bit is reserved for the sign.

• To tell the compiler that a variable has no sign bit,
declare it to be unsigned.

• Unsigned numbers are primarily useful for

systems programming and low-level, machine-

dependent applications.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 7: Basic Types

Integer Types in C99

• The short int, int, long int, and long long

int types (along with the signed char type) are

called standard signed integer types in C99.

• The unsigned short int, unsigned int,

unsigned long int, and unsigned long long

int types (along with the unsigned char type and

the _Bool type) are called standard unsigned integer

types.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 7: Basic Types

Floating Types

• C provides three floating types, corresponding to

different floating-point formats:

– float Single-precision floating-point

– double Double-precision floating-point

– long double Extended-precision floating-point

• float is suitable when the amount of precision

isn’t critical.

• double provides enough precision for most

programs.

• long double is rarely used.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 7: Basic Types

Reading and Writing

Floating-Point Numbers
• The conversion specifications %e, %f, and %g are used for

reading and writing single-precision floating-point numbers.

• When reading a value of type double, put the letter l in

front of e, f, or g:

double d;

scanf("%lf", &d);

• Note: Use l only in a scanf format string, not a printf

string.

• In a printf format string, the e, f, and g conversions can

be used to write either float or double values.

• When reading or writing a value of type long double, put

the letter L in front of e, f, or g.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 7: Basic Types

Character Types

• A variable of type char can be assigned any

single character:

char ch;

ch = 'a'; /* lower-case a */

ch = 'A'; /* upper-case A */

ch = '0'; /* zero */

ch = ' '; /* space */

• Notice that character constants are enclosed in

single quotes, not double quotes.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 7: Basic Types

Operations on Characters

• Working with characters in C is simple, because

of one fact: C treats characters as small integers.

• The character 'a' has the value 97, 'A' has the

value 65, '0' has the value 48, and ' ' has the

value 32.

• Character constants actually have int type rather

than char type.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 7: Basic Types

Operations on Characters

• When a character appears in a computation, C uses

its integer value.

• Consider the following examples, which assume

the ASCII character set:

char ch;

int i;

i = 'a'; /* i is now 97 */

ch = 65; /* ch is now 'A' */

ch = ch + 1; /* ch is now 'B' */

ch++; /* ch is now 'C' */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 7: Basic Types

Escape Sequences

• A complete list of character escapes:

Name Escape Sequence

Alert (bell) \a

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Backslash \\

Question mark \?

Single quote \'

Double quote \"

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 7: Basic Types

Character-Handling Functions

• Calling C’s toupper library function is a fast

and portable way to convert case:

ch = toupper(ch);

• toupper returns the upper-case version of its

argument.

• Programs that call toupper need to have

#include <ctype.h> directive at the top.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 7: Basic Types

Reading and Writing Characters
Using scanf and printf

• The %c conversion specification allows scanf and

printf to read and write single characters:

char ch;

scanf("%c", &ch); /* reads one character */

printf("%c", ch); /* writes one character */

• scanf doesn’t skip white-space characters.

• To force scanf to skip white space before reading a

character, put a space in its format string just before %c:

scanf(" %c", &ch);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

• For single-character input and output, getchar and

putchar are an alternative to scanf and printf.

• putchar writes a character:

putchar(ch);

• Each time getchar is called, it reads one character,

which it returns:

ch = getchar();

• getchar returns an int value rather than a char

value, so ch will often have type int.

• Like scanf, getchar doesn’t skip white-space

characters as it reads.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

• getchar is useful in loops that skip characters as

well as loops that search for characters.

• A statement that uses getchar to skip an

indefinite number of blank characters:

while ((ch = getchar()) == ' ')

;

• When the loop terminates, ch will contain the first

nonblank character that getchar encountered.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 7: Basic Types

Program: Determining the

Length of a Message
• The length.c program displays the length of a message

entered by the user:

Enter a message: Brevity is the soul of wit.

Your message was 27 character(s) long.

• The length includes spaces and punctuation, but not the

new-line character at the end of the message.

• We could use either scanf or getchar to read

characters; most C programmers would choose getchar.

• length2.c is a shorter program that eliminates the

variable used to store the character read by getchar.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 7: Basic Types

length.c

/* Determines the length of a message */

#include <stdio.h>

int main(void)

{
char ch;

int len = 0;

printf("Enter a message: ");

ch = getchar();

while (ch != '\n') {

len++;

ch = getchar();

}

printf("Your message was %d character(s) long.\n", len);

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 7: Basic Types

length2.c

/* Determines the length of a message */

#include <stdio.h>

int main(void)

{

int len = 0;

printf("Enter a message: ");

while (getchar() != '\n')

len++;

printf("Your message was %d character(s) long.\n", len);

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 7: Basic Types

The sizeof Operator

• The value of the expression

sizeof (type-name)

is an unsigned integer representing the number of

bytes required to store a value belonging to type-

name.

• sizeof(char) is always 1, but the sizes of

other types may vary.

• On a 32-bit machine, sizeof(int) is normally

4.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 8: Arrays

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 8

Arrays

Chapter 8: Arrays

Scalar Variables versus Aggregate Variables

• So far, the only variables we’ve seen are scalar:

capable of holding a single data item.

• C also supports aggregate variables, which can

store collections of values.

• There are two kinds of aggregates in C: arrays and

structures.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 8: Arrays

One-Dimensional Arrays

• An array is a data structure containing a number of

data values, all of which have the same type.

• These values, known as elements, can be individually

selected by their position within the array.

• The simplest kind of array has just one dimension.

• The elements of a one-dimensional array a are

conceptually arranged one after another in a single

row (or column):

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 8: Arrays

One-Dimensional Arrays

• To declare an array, we must specify the type of

the array’s elements and the number of elements:

int a[10];

• The elements may be of any type; the length of the
array can be any (integer) constant expression.

• Using a macro to define the length of an array is

an excellent practice:

#define N 10

…

int a[N];

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 8: Arrays

Array Subscripting

• To access an array element, write the array name

followed by an integer value in square brackets.

• This is referred to as subscripting or indexing the

array.

• The elements of an array of length n are indexed

from 0 to n – 1.

• If a is an array of length 10, its elements are

designated by a[0], a[1], …, a[9]:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 8: Arrays

Array Subscripting

• Many programs contain for loops whose job is to perform

some operation on every element in an array.

• Examples of typical operations on an array a of length N:

for (i = 0; i < N; i++)

a[i] = 0; /* clears a */

for (i = 0; i < N; i++)

scanf("%d", &a[i]); /* reads data into a */

for (i = 0; i < N; i++)

sum += a[i]; /* sums the elements of a */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 8: Arrays

Array Subscripting

• An array subscript may be any integer expression:

a[i+j*10] = 0;

• The expression can even have side effects:

i = 0;

while (i < N)

a[i++] = 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 8: Arrays

Program: Reversing a Series of Numbers

• The reverse.c program prompts the user to

enter a series of numbers, then writes the numbers

in reverse order:

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31

In reverse order: 31 50 11 23 94 7 102 49 82 34

• The program stores the numbers in an array as

they’re read, then goes through the array

backwards, printing the elements one by one.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 8: Arrays

reverse.c

/* Reverses a series of numbers */

#include <stdio.h>

#define N 10

int main(void)

{
int a[N], i;

printf("Enter %d numbers: ", N);

for (i = 0; i < N; i++)

scanf("%d", &a[i]);

printf("In reverse order:");

for (i = N - 1; i >= 0; i--)

printf(" %d", a[i]);

printf("\n");

return 0;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 8: Arrays

Array Initialization

• An array, like any other variable, can be given an

initial value at the time it’s declared.

• The most common form of array initializer is a

list of constant expressions enclosed in braces and

separated by commas:

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 8: Arrays

Array Initialization

• If the initializer is shorter than the array, the remaining

elements of the array are given the value 0:

int a[10] = {1, 2, 3, 4, 5, 6};

/* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

• Using this feature, we can easily initialize an array to all

zeros:

int a[10] = {0};

/* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */

There’s a single 0 inside the braces because it’s illegal for

an initializer to be completely empty.

• It’s also illegal for an initializer to be longer than the array

it initializes.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 8: Arrays

Array Initialization

• If an initializer is present, the length of the array

may be omitted:

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• The compiler uses the length of the initializer to

determine how long the array is.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 8: Arrays

Designated Initializers (C99)

• It’s often the case that relatively few elements of

an array need to be initialized explicitly; the other

elements can be given default values.

• An example:

int a[15] =

{0, 0, 29, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 48};

• For a large array, writing an initializer in this

fashion is tedious and error-prone.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 8: Arrays

Designated Initializers (C99)

• C99’s designated initializers can be used to solve

this problem.

• Here’s how we could redo the previous example

using a designated initializer:

int a[15] = {[2] = 29, [9] = 7, [14] = 48};

• Each number in brackets is said to be a designator.

• Also, the order in which the elements are listed no

longer matters.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 8: Arrays

Using the sizeof Operator with Arrays

• The sizeof operator can determine the size of

an array (in bytes).

• If a is an array of 10 integers, then sizeof(a)

is typically 40 (assuming that each integer requires

four bytes).

• We can also use sizeof to measure the size of

an array element, such as a[0].

• Dividing the array size by the element size gives

the length of the array:

sizeof(a) / sizeof(a[0])

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 8: Arrays

Using the sizeof Operator with Arrays

• To avoid a warning, we can add a cast that
converts sizeof(a) / sizeof(a[0]) to a

signed integer:

for (i = 0; i < (int) (sizeof(a) / sizeof(a[0])); i++)

a[i] = 0;

• Defining a macro for the size calculation is often

helpful:

#define SIZE ((int) (sizeof(a) / sizeof(a[0])))

for (i = 0; i < SIZE; i++)

a[i] = 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 8: Arrays

Multidimensional Arrays

• An array may have any number of dimensions.

• The following declaration creates a two-dimensional array

(a matrix, in mathematical terminology):

int m[5][9];

• m has 5 rows and 9 columns. Both rows and columns are

indexed from 0:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 8: Arrays

Multidimensional Arrays

• To access the element of m in row i, column j,

we must write m[i][j].

• The expression m[i] designates row i of m, and

m[i][j] then selects element j in this row.

• Resist the temptation to write m[i,j] instead of

m[i][j].

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 8: Arrays

Multidimensional Arrays

• Although we visualize two-dimensional arrays as

tables, that’s not the way they’re actually stored in

computer memory.

• C stores arrays in row-major order, with row 0

first, then row 1, and so forth.

• How the m array is stored:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 8: Arrays

Multidimensional Arrays

• Nested for loops are ideal for processing

multidimensional arrays.

• Consider the problem of initializing an array for use as an

identity matrix. A pair of nested for loops is perfect:

#define N 10

double ident[N][N];

int row, col;

for (row = 0; row < N; row++)

for (col = 0; col < N; col++)

if (row == col)

ident[row][col] = 1.0;

else

ident[row][col] = 0.0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 8: Arrays

Initializing a Multidimensional Array

• We can create an initializer for a two-dimensional

array by nesting one-dimensional initializers:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},

{0, 1, 0, 1, 1, 0, 0, 1, 0},

{1, 1, 0, 1, 0, 0, 0, 1, 0},

{1, 1, 0, 1, 0, 0, 1, 1, 1}};

• Initializers for higher-dimensional arrays are

constructed in a similar fashion.

• C provides a variety of ways to abbreviate

initializers for multidimensional arrays

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 8: Arrays

Initializing a Multidimensional Array

• If an initializer isn’t large enough to fill a

multidimensional array, the remaining elements

are given the value 0.

• The following initializer fills only the first three
rows of m; the last two rows will contain zeros:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},

{0, 1, 0, 1, 1, 0, 0, 1, 0}};

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 8: Arrays

Initializing a Multidimensional Array

• If an inner list isn’t long enough to fill a row, the

remaining elements in the row are initialized to 0:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1},

{0, 1, 0, 1, 1, 0, 0, 1},

{1, 1, 0, 1, 0, 0, 0, 1},

{1, 1, 0, 1, 0, 0, 1, 1, 1}};

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 8: Arrays

Initializing a Multidimensional Array

• We can even omit the inner braces:

int m[5][9] = {1, 1, 1, 1, 1, 0, 1, 1, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0,

0, 1, 0, 1, 1, 0, 0, 1, 0,

1, 1, 0, 1, 0, 0, 0, 1, 0,

1, 1, 0, 1, 0, 0, 1, 1, 1};

Once the compiler has seen enough values to fill

one row, it begins filling the next.

• Omitting the inner braces can be risky, since an

extra element (or even worse, a missing element)

will affect the rest of the initializer.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

Chapter 8: Arrays

Constant Arrays

• An array can be made “constant” by starting its
declaration with the word const:

const char hex_chars[] =

{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

'A', 'B', 'C', 'D', 'E', 'F'};

• An array that’s been declared const should not

be modified by the program.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 8: Arrays

Constant Arrays

• Advantages of declaring an array to be const:

– Documents that the program won’t change the array.

– Helps the compiler catch errors.

• const isn’t limited to arrays, but it’s particularly

useful in array declarations.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 8: Arrays

Program: Dealing a Hand of Cards

• The deal.c program illustrates both two-

dimensional arrays and constant arrays.

• The program deals a random hand from a standard

deck of playing cards.

• Each card in a standard deck has a suit (clubs,

diamonds, hearts, or spades) and a rank (two,

three, four, five, six, seven, eight, nine, ten, jack,

queen, king, or ace).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 8: Arrays

Program: Dealing a Hand of Cards

• The user will specify how many cards should be in

the hand:

Enter number of cards in hand: 5

Your hand: 7c 2s 5d and 2h

• Problems to be solved:

– How do we pick cards randomly from the deck?

– How do we avoid picking the same card twice?

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 8: Arrays

Program: Dealing a Hand of Cards

• To pick cards randomly, we’ll use several C

library functions:

– time (from <time.h>) – returns the current time,

encoded in a single number.

– srand (from <stdlib.h>) – initializes C’s random

number generator.

– rand (from <stdlib.h>) – produces an apparently

random number each time it’s called.

• By using the % operator, we can scale the return

value from rand so that it falls between 0 and 3

(for suits) or between 0 and 12 (for ranks).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

Chapter 8: Arrays

Program: Dealing a Hand of Cards

• The in_hand array is used to keep track of which

cards have already been chosen.

• The array has 4 rows and 13 columns; each element

corresponds to one of the 52 cards in the deck.

• All elements of the array will be false to start with.

• Each time we pick a card at random, we’ll check

whether the element of in_hand corresponding to

that card is true or false.

– If it’s true, we’ll have to pick another card.

– If it’s false, we’ll store true in that element to remind us

later that this card has already been picked.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
30

Chapter 8: Arrays

Program: Dealing a Hand of Cards

• Once we’ve verified that a card is “new,” we’ll

need to translate its numerical rank and suit into

characters and then display the card.

• To translate the rank and suit to character form,

we’ll set up two arrays of characters—one for the

rank and one for the suit—and then use the

numbers to subscript the arrays.

• These arrays won’t change during program
execution, so they are declared to be const.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
31

Chapter 8: Arrays

deal.c

/* Deals a random hand of cards */

#include <stdbool.h> /* C99 only */

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define NUM_SUITS 4

#define NUM_RANKS 13

int main(void)

{

bool in_hand[NUM_SUITS][NUM_RANKS] = {false};

int num_cards, rank, suit;

const char rank_code[] = {'2','3','4','5','6','7','8',

'9','t','j','q','k','a'};

const char suit_code[] = {'c','d','h','s'};

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
32

Chapter 8: Arrays

srand((unsigned) time(NULL));

printf("Enter number of cards in hand: ");

scanf("%d", &num_cards);

printf("Your hand:");

while (num_cards > 0) {

suit = rand() % NUM_SUITS; /* picks a random suit */

rank = rand() % NUM_RANKS; /* picks a random rank */

if (!in_hand[suit][rank]) {

in_hand[suit][rank] = true;

num_cards--;

printf(" %c%c", rank_code[rank], suit_code[suit]);

}

}

printf("\n");

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
33

Chapter 8: Arrays

Variable-Length Arrays (C99)

• In C89, the length of an array variable must be

specified by a constant expression.

• In C99, however, it’s sometimes possible to use an

expression that’s not constant.

• The reverse2.c program—a modification of

reverse.c—illustrates this ability.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
34

Chapter 8: Arrays

reverse2.c

/* Reverses a series of numbers using a variable-length

array - C99 only */

#include <stdio.h>

int main(void)

{

int i, n;

printf("How many numbers do you want to reverse? ");

scanf("%d", &n);

int a[n]; /* C99 only - length of array depends on n */

printf("Enter %d numbers: ", n);

for (i = 0; i < n; i++)

scanf("%d", &a[i]);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
35

Chapter 8: Arrays

printf("In reverse order:");

for (i = n - 1; i >= 0; i--)

printf(" %d", a[i]);

printf("\n");

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
36

Chapter 8: Arrays

Variable-Length Arrays (C99)

• The array a in the reverse2.c program is an

example of a variable-length array (or VLA).

• The length of a VLA is computed when the

program is executed.

• The chief advantage of a VLA is that a program

can calculate exactly how many elements are

needed.

• If the programmer makes the choice, it’s likely

that the array will be too long (wasting memory)

or too short (causing the program to fail).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
37

	ch06
	ch07
	ch08

