
Chapter 9: Functions

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 9

Functions

Chapter 9: Functions

Introduction

• A function is a series of statements that have been

grouped together and given a name.

• Each function is essentially a small program, with

its own declarations and statements.

• Advantages of functions:

– A program can be divided into small pieces that are

easier to understand and modify.

– We can avoid duplicating code that’s used more than

once.

– A function that was originally part of one program can

be reused in other programs.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 9: Functions

Program: Computing Averages

• A function named average that computes the

average of two double values:

double average(double a, double b)

{

return (a + b) / 2;

}

• The word double at the beginning is the return

type of average.

• The identifiers a and b (the function’s

parameters) represent the numbers that will be

supplied when average is called.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 9: Functions

Program: Computing Averages

• Every function has an executable part, called the

body, which is enclosed in braces.

• The body of average consists of a single

return statement.

• Executing this statement causes the function to

“return” to the place from which it was called; the

value of (a + b) / 2 will be the value returned

by the function.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 9: Functions

Program: Computing Averages

• A function call consists of a function name

followed by a list of arguments.

– average(x, y) is a call of the average function.

• Arguments are used to supply information to a

function.

– The call average(x, y) causes the values of x and
y to be copied into the parameters a and b.

• An argument doesn’t have to be a variable; any

expression of a compatible type will do.

– average(5.1, 8.9) and average(x/2, y/3)
are legal.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 9: Functions

Program: Computing Averages

• We’ll put the call of average in the place where

we need to use the return value.

• A statement that prints the average of x and y:

printf("Average: %g\n", average(x, y));

The return value of average isn’t saved; the

program prints it and then discards it.

• If we had needed the return value later in the

program, we could have captured it in a variable:

avg = average(x, y);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 9: Functions

Program: Computing Averages

• The average.c program reads three numbers

and uses the average function to compute their

averages, one pair at a time:

Enter three numbers: 3.5 9.6 10.2

Average of 3.5 and 9.6: 6.55

Average of 9.6 and 10.2: 9.9

Average of 3.5 and 10.2: 6.85

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 9: Functions

average.c

/* Computes pairwise averages of three numbers */

#include <stdio.h>

double average(double a, double b)

{

return (a + b) / 2;

}

int main(void)

{

double x, y, z;

printf("Enter three numbers: ");

scanf("%lf%lf%lf", &x, &y, &z);

printf("Average of %g and %g: %g\n", x, y, average(x, y));

printf("Average of %g and %g: %g\n", y, z, average(y, z));

printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 9: Functions

Program: Printing a Countdown

• To indicate that a function has no return value, we

specify that its return type is void:

void print_count(int n)

{

printf("T minus %d and counting\n", n);

}

• void is a type with no values.

• A call of print_count must appear in a statement by

itself:

print_count(i);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 9: Functions

Function Definitions

• General form of a function definition:

return-type function-name (parameters)

{

declarations

statements

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 9: Functions

Function Definitions

• The body of a function may include both

declarations and statements.

• An alternative version of the average function:

double average(double a, double b)

{

double sum; /* declaration */

sum = a + b; /* statement */

return sum / 2; /* statement */

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 9: Functions

Program: Testing Whether a Number Is Prime

• The prime.c program tests whether a number is

prime:

Enter a number: 34

Not prime

• The program uses a function named is_prime

that returns true if its parameter is a prime

number and false if it isn’t.

• is_prime divides its parameter n by each of the

numbers between 2 and the square root of n; if the

remainder is ever 0, n isn’t prime.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 9: Functions

prime.c

/* Tests whether a number is prime */

#include <stdbool.h> /* C99 only */

#include <stdio.h>

bool is_prime(int n)

{

int divisor;

if (n <= 1)

return false;

for (divisor = 2; divisor * divisor <= n; divisor++)

if (n % divisor == 0)

return false;

return true;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 9: Functions

int main(void)

{

int n;

printf("Enter a number: ");

scanf("%d", &n);

if (is_prime(n))

printf("Prime\n");

else

printf("Not prime\n");

return 0;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 9: Functions

Function Declarations

• A function declaration provides the compiler with a

brief glimpse at a function whose full definition will

appear later.

• General form of a function declaration:

return-type function-name (parameters) ;

• The declaration of a function must be consistent with

the function’s definition.

• Here’s the average.c program with a declaration of

average added.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 9: Functions

Function Declarations
#include <stdio.h>

double average(double a, double b); /* DECLARATION */

int main(void)

{
double x, y, z;

printf("Enter three numbers: ");

scanf("%lf%lf%lf", &x, &y, &z);

printf("Average of %g and %g: %g\n", x, y, average(x, y));

printf("Average of %g and %g: %g\n", y, z, average(y, z));

printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

double average(double a, double b) /* DEFINITION */

{

return (a + b) / 2;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 9: Functions

Arguments

• In C, arguments are passed by value: when a

function is called, each argument is evaluated and

its value assigned to the corresponding parameter.

• Since the parameter contains a copy of the

argument’s value, any changes made to the

parameter during the execution of the function

does not affect the argument.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 9: Functions

Array Arguments

• Example:

int sum_array(int a[], int n)

{
int i, sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;
}

• Since sum_array needs to know the length of a,

we must supply it as a second argument.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 9: Functions

Array Arguments

• When sum_array is called, the first argument will be the

name of an array, and the second will be its length:

#define LEN 100

int main(void)

{
int b[LEN], total;
…

total = sum_array(b, LEN);
…

}

• Notice that we don’t put brackets after an array name when

passing it to a function:

total = sum_array(b[], LEN); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 9: Functions

Array Arguments

• A function is allowed to change the elements of an

array parameter, and the change is reflected in the

corresponding argument.

• A function that modifies an array by storing zero

into each of its elements:

void store_zeros(int a[], int n)

{
int i;

for (i = 0; i < n; i++)

a[i] = 0;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 9: Functions

Array Arguments

• If a parameter is a multidimensional array, only the length

of the first dimension may be omitted.

• If we revise sum_array so that a is a two-dimensional

array, we must specify the number of columns in a:

#define LEN 10

int sum_two_dimensional_array(int a[][LEN], int n)

{
int i, j, sum = 0;

for (i = 0; i < n; i++)

for (j = 0; j < LEN; j++)

sum += a[i][j];

return sum;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 9: Functions

The return Statement

• A non-void function must use the return

statement to specify what value it will return.

• The return statement has the form

return expression ;

• The expression is often just a constant or variable:

return 0;

return status;

• More complex expressions are possible:

return n >= 0 ? n : 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 9: Functions

The return Statement

• return statements may appear in functions

whose return type is void, provided that no

expression is given:

return; /* return in a void function */

• Example:

void print_int(int i)

{

if (i < 0)

return;

printf("%d", i);

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 9: Functions

Program Termination

• Normally, the return type of main is int:

int main(void)

{
…

}

• Older C programs often omit main’s return type,

taking advantage of the fact that it traditionally

defaults to int:

main()

{
…

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

Chapter 9: Functions

Recursion

• A function is recursive if it calls itself.

• The following function computes n! recursively,

using the formula n! = n × (n – 1)!:

int fact(int n)

{
if (n <= 1)

return 1;

else

return n * fact(n - 1);
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 9: Functions

• To see how recursion works, let’s trace the

execution of the statement

i = fact(3);

fact(3) finds that 3 is not less than or equal to 1, so it calls

fact(2), which finds that 2 is not less than or equal to 1, so

it calls

fact(1), which finds that 1 is less than or equal to 1, so it

returns 1, causing

fact(2) to return 2 × 1 = 2, causing

fact(3) to return 3 × 2 = 6.

Recursion

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 9: Functions

Recursion

• The following recursive function computes xn,

using the formula xn = x × xn–1.

int power(int x, int n)

{

if (n == 0)

return 1;

else

return x * power(x, n - 1);

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 9: Functions

Recursion

• We can condense the power function by putting a

conditional expression in the return statement:

int power(int x, int n)

{

return n == 0 ? 1 : x * power(x, n - 1);

}

• Both fact and power are careful to test a

“termination condition” as soon as they’re called.

• All recursive functions need some kind of

termination condition in order to prevent infinite

recursion.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 9: Functions

• A classic example of divide-and-conquer can be

found in the popular Quicksort algorithm.

• Assume that the array to be sorted is indexed from

1 to n.

Quicksort algorithm

1. Choose an array element e (the “partitioning element”),

then rearrange the array so that elements 1, …, i – 1 are

less than or equal to e, element i contains e, and elements

i + 1, …, n are greater than or equal to e.

2. Sort elements 1, …, i – 1 by using Quicksort recursively.

3. Sort elements i + 1, …, n by using Quicksort recursively.

The Quicksort Algorithm

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

Chapter 9: Functions

The Quicksort Algorithm

• Step 1 of the Quicksort algorithm is obviously

critical.

• There are various methods to partition an array.

• We’ll use a technique that’s easy to understand but

not particularly efficient.

• The algorithm relies on two “markers” named low

and high, which keep track of positions within the

array.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
30

Chapter 9: Functions

The Quicksort Algorithm

• Initially, low points to the first element; high points to the last.

• We copy the first element (the partitioning element) into a

temporary location, leaving a “hole” in the array.

• Next, we move high across the array from right to left until it

points to an element that’s smaller than the partitioning element.

• We then copy the element into the hole that low points to,

which creates a new hole (pointed to by high).

• We now move low from left to right, looking for an element

that’s larger than the partitioning element. When we find one,

we copy it into the hole that high points to.

• The process repeats until low and high meet at a hole.

• Finally, we copy the partitioning element into the hole.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
31

Chapter 9: Functions

The Quicksort Algorithm

• Example of partitioning an array:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
32

Chapter 9: Functions

The Quicksort Algorithm

• By the final figure, all elements to the left of the

partitioning element are less than or equal to 12,

and all elements to the right are greater than or

equal to 12.

• Now that the array has been partitioned, we can

use Quicksort recursively to sort the first four

elements of the array (10, 3, 6, and 7) and the last

two (15 and 18).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
33

Chapter 9: Functions

Program: Quicksort

• Let’s develop a recursive function named quicksort

that uses the Quicksort algorithm to sort an array of

integers.

• The qsort.c program reads 10 numbers into an array,

calls quicksort to sort the array, then prints the

elements in the array:

Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51

In sorted order: 3 4 9 12 16 25 47 51 66 82

• The code for partitioning the array is in a separate function

named split.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
34

Chapter 9: Functions

qsort.c

/* Sorts an array of integers using Quicksort algorithm */

#include <stdio.h>

#define N 10

void quicksort(int a[], int low, int high);

int split(int a[], int low, int high);

int main(void)
{

int a[N], i;

printf("Enter %d numbers to be sorted: ", N);

for (i = 0; i < N; i++)

scanf("%d", &a[i]);

quicksort(a, 0, N - 1);

printf("In sorted order: ");

for (i = 0; i < N; i++)

printf("%d ", a[i]);

printf("\n");

return 0;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
35

Chapter 9: Functions

void quicksort(int a[], int low, int high)

{

int middle;

if (low >= high) return;

middle = split(a, low, high);

quicksort(a, low, middle - 1);

quicksort(a, middle + 1, high);

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
36

Chapter 9: Functions

int split(int a[], int low, int high)

{

int part_element = a[low];

for (;;) {

while (low < high && part_element <= a[high])

high--;

if (low >= high) break;

a[low++] = a[high];

while (low < high && a[low] <= part_element)

low++;

if (low >= high) break;

a[high--] = a[low];

}

a[high] = part_element;

return high;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
37

Chapter 9: Functions

Program: Quicksort

• Ways to improve the program’s performance:

– Improve the partitioning algorithm.

– Use a different method to sort small arrays.

– Make Quicksort nonrecursive.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
38

