
2016-06-03

1

Chapter 11: Pointers

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 11

Pointers

Chapter 11: Pointers

Pointer Variables

• The first step in understanding pointers is

visualizing what they represent at the machine

level.

• In most modern computers, main memory is

divided into bytes, with each byte capable of

storing eight bits of information:

• Each byte has a unique address.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 11: Pointers

Pointer Variables

• If there are n bytes in memory, we can think of

addresses as numbers that range from 0 to n – 1:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 11: Pointers

Pointer Variables

• Each variable in a program occupies one or more

bytes of memory.

• The address of the first byte is said to be the

address of the variable.

• In the following figure, the address of the variable

i is 2000:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 11: Pointers

Pointer Variables

• Addresses can be stored in special pointer

variables.

• When we store the address of a variable i in the

pointer variable p, we say that p “points to” i.

• A graphical representation:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 11: Pointers

Declaring Pointer Variables

• When a pointer variable is declared, its name must

be preceded by an asterisk:

int *p;

• p is a pointer variable capable of pointing to

objects of type int.

• We use the term object instead of variable since p

might point to an area of memory that doesn’t

belong to a variable.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

2016-06-03

2

Chapter 11: Pointers

Declaring Pointer Variables

• Pointer variables can appear in declarations along with

other variables:

int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to

objects of a particular type (the referenced type):

int *p; /* points only to integers */

double *q; /* points only to doubles */

char *r; /* points only to characters */

• There are no restrictions on what the referenced type

may be.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 11: Pointers

The Address and Indirection Operators

• C provides a pair of operators designed

specifically for use with pointers.

– To find the address of a variable, we use & (address)

operator.

– To gain access to the object that a pointer points to, we
use * (indirection) operator.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 11: Pointers

The Address Operator

• Declaring a pointer variable sets aside space for a

pointer but doesn’t make it point to an object:

int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use it.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 11: Pointers

The Address Operator

• One way to initialize a pointer variable is to assign

it the address of a variable:

int i, *p;

…

p = &i;

• Assigning the address of i to the variable p makes

p point to i:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 11: Pointers

The Address Operator

• It’s also possible to initialize a pointer variable at

the time it’s declared:

int i;

int *p = &i;

• The declaration of i can even be combined with

the declaration of p:

int i, *p = &i;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 11: Pointers

The Indirection Operator

• Once a pointer variable points to an object, we can

use the * (indirection) operator to access what’s

stored in the object.

• If p points to i, we can print the value of i as

follows:

printf("%d\n", *p);

• Applying & to a variable produces a pointer to the

variable. Applying * to the pointer takes us back

to the original variable:

j = *&i; /* same as j = i; */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

2016-06-03

3

Chapter 11: Pointers

The Indirection Operator

• As long as p points to i, *p is an alias for i.

– *p has the same value as i.

– Changing the value of *p changes the value of i.

• The example on the next slide illustrates the

equivalence of *p and i.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 11: Pointers

The Indirection Operator

p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */

printf("%d\n", *p); /* prints 1 */

*p = 2;

printf("%d\n", i); /* prints 2 */

printf("%d\n", *p); /* prints 2 */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 11: Pointers

The Indirection Operator

• Applying the indirection operator to an

uninitialized pointer variable causes undefined

behavior:

int *p;

printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly dangerous:

int *p;

*p = 1; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 11: Pointers

Pointer Assignment

• C allows the use of the assignment operator to

copy pointers of the same type.

• Assume that the following declaration is in effect:

int i, j, *p, *q;

• Example of pointer assignment:

p = &i;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 11: Pointers

Pointer Assignment

• Another example of pointer assignment:

q = p;

q now points to the same place as p:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 11: Pointers

Pointer Assignment

• If p and q both point to i, we can change i by

assigning a new value to either *p or *q:

*p = 1;

*q = 2;

• Any number of pointer variables may point to the

same object.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

2016-06-03

4

Chapter 11: Pointers

Pointer Assignment

• Be careful not to confuse

q = p;

with

*q = *p;

• The first statement is a pointer assignment, but the

second is not.

• The example on the next slide shows the effect of

the second statement.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 11: Pointers

Pointer Assignment

p = &i;

q = &j;

i = 1;

*q = *p;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 11: Pointers

Pointers as Arguments

• New definition of decompose:

void decompose(double x, long *int_part,

double *frac_part)

{

*int_part = (long) x;

*frac_part = x - *int_part;

}

• Possible prototypes for decompose:

void decompose(double x, long *int_part,

double *frac_part);

void decompose(double, long *, double *);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 11: Pointers

Pointers as Arguments

• A call of decompose:

decompose(3.14159, &i, &d);

• As a result of the call, int_part points to i and

frac_part points to d:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 11: Pointers

Pointers as Arguments

• The first assignment in the body of decompose

converts the value of x to type long and stores it

in the object pointed to by int_part:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 11: Pointers

Pointers as Arguments

• The second assignment stores x - *int_part

into the object that frac_part points to:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

2016-06-03

5

Chapter 11: Pointers

Pointers as Arguments

• Arguments in calls of scanf are pointers:

int i;

…

scanf("%d", &i);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 11: Pointers

Pointers as Arguments

• Although scanf’s arguments must be pointers,

it’s not always true that every argument needs the
& operator:

int i, *p;
…

p = &i;

scanf("%d", p);

• Using the & operator in the call would be wrong:

scanf("%d", &p); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 11: Pointers

Program: Finding the Largest and

Smallest Elements in an Array
• The max_min.c program uses a function named max_min

to find the largest and smallest elements in an array.

• Prototype for max_min:

void max_min(int a[], int n, int *max, int *min);

• Example call of max_min:

max_min(b, N, &big, &small);

• When max_min finds the largest element in b, it stores the

value in big by assigning it to *max.

• max_min stores the smallest element of b in small by

assigning it to *min.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 11: Pointers

Program: Finding the Largest and

Smallest Elements in an Array
• max_min.c will read 10 numbers into an array, pass

it to the max_min function, and print the results:

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31

Largest: 102

Smallest: 7

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 11: Pointers

maxmin.c

/* Finds the largest and smallest elements in an array */

#include <stdio.h>

#define N 10

void max_min(int a[], int n, int *max, int *min);

int main(void)

{

int b[N], i, big, small;

printf("Enter %d numbers: ", N);

for (i = 0; i < N; i++)

scanf("%d", &b[i]);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

Chapter 11: Pointers

max_min(b, N, &big, &small);

printf("Largest: %d\n", big);

printf("Smallest: %d\n", small);

return 0;

}

void max_min(int a[], int n, int *max, int *min)

{

int i;

*max = *min = a[0];

for (i = 1; i < n; i++) {

if (a[i] > *max)

*max = a[i];

else if (a[i] < *min)

*min = a[i];

}

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
30

2016-06-03

6

Chapter 11: Pointers

Using const to Protect Arguments

• We can use const to document that a function

won’t change an object whose address is passed to

the function.

• const goes in the parameter’s declaration, just

before the specification of its type:

void f(const int *p)

{

*p = 0; /*** WRONG ***/

}

Attempting to modify *p is an error that the

compiler will detect.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
31

Chapter 11: Pointers

Pointers as Return Values

• Functions are allowed to return pointers:

int *max(int *a, int *b)

{
if (*a > *b)

return a;

else

return b;
}

• A call of the max function:

int *p, i, j;
…

p = max(&i, &j);

After the call, p points to either i or j.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
32

