Chapter 12

Pointers and Arrays

@ PROGRAMMII\IG 1

A Modern Approach secowo eo

Introduction

C allows us to perform arithmetic—addition and
subtraction—on pointers to array elements.

This leads to an alternative way of processing
arrays in which pointers take the place of array
subscripts.

The relationship between pointers and arrays in C
IS a close one.

Understanding this relationship is critical for
mastering C.

C PROGRANMMING 2

A Modern Approach secono eoimon

Pointer Arithmetic

« Chapter 11 showed that pointers can point to array
elements:

int af[l1l0], *p;
p = &al0];

A graphical representation:

in

@ PROGRAMMII\IG 3

A Modern AI{)IUY‘UC!C;& SECOND ED

Pointer Arithmetic

« We can now access a [0] through p; for example,
we can store the value 5in a [0] by writing

*]_O = 5;
« An updated picture:

g

C PROGRANMMING 4

A Modern Approach secowo eoimion

Pointer Arithmetic

* |f p points to an element of an array a, the other
elements of a can be accessed by performing
pointer arithmetic (or address arithmetic) on p.

» C supports three (and only three) forms of pointer
arithmetic:
— Adding an integer to a pointer
— Subtracting an integer from a pointer
— Subtracting one pointer from another

C PROGRANMMING 5

A Modern Approach secowo eoimion

Adding an Integer to a Pointer

« Adding an integer j to a pointer p yields a pointer
to the element j places after the one that p points
to.

« More precisely, if p points to the array element
ali]l,thenp + jpointstoa[i+7].

« Assume that the following declarations are in
effect:

int a[l0], *p, *qgq, 1;

C PROGRANMMING 6

A Modern Approach secowo eoimion

Adding an Integer to a Pointer

« Example of pointer addition:
p = &al2]; 5

@ PROGRAMMII\IG 7

A Modern Approach secowo

Subtracting an Integer from a Pointer

 Ifppointstoa[i],thenp - Jpointstoa[i-7j].

« Example: i
p = &al8];

0 1 2 3 4 5 6 7 8 9

d p
qa=p - 3;
a
0 1 2 3 4 5 6 7 8 9
P S|
p -= 6; ‘ |
: I
0 1 2 3 4 5 6 7 8 9
C PROGRAMMII\IG :

A Modern Approach secowo

Subtracting One Pointer from Another

When one pointer is subtracted from another, the result
IS the distance (measured in array elements) between the
pointers.

If p pointstoa[1] and gpointstoa[j],thenp - gis
equal to 1 - 7.

Example:
p = &alo]; gl 1 ol
q = &al[l]; :l .

a

i=p - g /* 1 is 4 */
i =qg - p; /* 1 is -4 */

@ PROGRAMMII\IG e

A Modern Approach secowo

Comparing Pointers

 Pointers can be compared using the relational
operators (<, <=, >, >=) and the equality operators
(==and !=).
— Using relational operators is meaningful only for pointers to
elements of the same array.
« The outcome of the comparison depends on the
relative positions of the two elements in the array.

o After the assignments

P &al[o];
q &afll];

the value of p <= g is 0 and the value of p >= g iIs 1.

C PROGRANMMING 10

A Modern Approach secowo eoimion

Using Pointers for Array Processing

 Pointer arithmetic allows us to visit the elements
of an array by repeatedly incrementing a pointer
variable.

* A loop that sums the elements of an array a:
#define N 10

int a[N], sum, *p;

sum = 0;
for (p = &al[0]; p < &al[N]; pt++)
sum += *p;

@ PROGRAMMII\IG 1

A Modern Approach secowo

Using Pointers for Array Processing

At the end of the first iteration: o[

At the end of the second iteration: b
At the end of the third iteration: :

@ PROGRAMMII\IG 12

A Modern Approach secows eo

Combining the * and ++ Operators
C programmers often combine the * (indirection)
and ++ operators.

A statement that modifies an array element and
then advances to the next element:

ali++] = 3;
The corresponding pointer version:
*p++ = 35

Because the postfix version of ++ takes
precedence over *, the compiler sees this as

*(pt+) = J;

C PROGRANMMING 13

A Modern Approach secowo eoimion

Combining the * and ++ Operators

e Possible combinations of * and ++:

Expression Meaning

*p++ or * (p++) Value of expression is *p before increment;
Increment p later

(*p) ++ Value of expression is *p before increment;
Increment *p later

*+4+p Or * (++p) Increment p first;
value of expression is *p after increment

++*p or ++ (*p) Increment *p first;
value of expression is *p after increment
* The * and —- operators mix in the same way as *

and ++.
C PROGRANMMING 14

A Modern Approach secowo eoimion

Combining the * and ++ Operators

 The most common combination of * and ++ IS
*p++, which is handy in loops.

* |Instead of writing
for (p = &a[0]; p < &al[N]; p++)
sum += *p;
to sum the elements of the array a, we could write
p = &al0];

while (p < &a[N])
sum += *p++;

C PROGRAMMII\IG 15

A Modern Approach secowo

Using an Array Name as a Pointer

Suppose that a Is declared as follows:
int a[l10];
Examples of using a as a pointer:

a = 7; / stores 7 in a[0] */
(a+l) = 12; / stores 12 in a[l] */

In general, a + i Isthesame as &a[1i].
— Both represent a pointer to element i of a.
Also, * (a+1) Isequivalenttoa[i].

— Both represent element 1 itself.

@ pnoanmmmc 16

A Modern Approach secowo

Using an Array Name as a Pointer

« The fact that an array name can serve as a pointer
makes It easier to write loops that step through an

array.
 Original loop:

for (p = &a[0]; p < &a[N]; pt++)
sum += *p;

 Simplified version:

for (p = a; p < a + N; p++)
sum += *p;

@ PROGRAMMII\IG 17

A Modern Approach secowo

Using an Array Name as a Pointer

 Although an array name can be used as a pointer,
1it’s not possible to assign it a new value.

« Attempting to make it point elsewhere iIs an error:
while (*a != 0)
at+; /*** WRONG ***/
« This 1S no great loss; we can always copy a Into a
pointer variable, then change the pointer variable:
p = a;
while (*p !'= 0)
p++;

C PROGRANMMING 18

A Modern Approach secowo eoimion

Processing the Elements

of a Multidimensional Array
 C stores two-dimensional arrays in row-major order.
 Layout of an array with r rows:

row 0 row 1 row r— 1

 |If p initially points to the element in row 0, column O,

we can Vvisit every element in the array by
Incrementing p repeatedly.

C PROGRAMMII\IG 19

A Modern Approach secowo

Processing the Elements

of a Multidimensional Array

« Consider the problem of initializing all elements of the following
array to zero:
int a[NUM ROWS] [NUM COLS];

« The obvious technique would be to use nested for loops:

int row, col;

for (row

= 0; row < NUM ROWS; rowt+)
for (col =
]

0; col < NUM COLS; col++)

alrow] [col] = 0;
« |If we view a as a one-dimensional array of integers, a single loop
Is sufficient:
int *p;

for (p = &a[0][0]; p <= &a[NUM ROWS-1] [NUM COLS-1]; pt+)
*p =07
C PROGRAMMII\IG 20

A Modern Approach secowo eoirion

Processing the Rows
of a Multidimensional Array

A pointer variable p can also be used for

processing the elements in just one row of a two-
dimensional array.

« To visit the elements of row 1, we’d initialize p to
point to element O in row 1 In the array a.

p = &al[1][0];
or we could simply write
p = alil;

@ PROGRAMMII\IG 21

A Modern Approach secowo

Processing the Rows
of a Multidimensional Array
« A loop that clears row i of the array a.
int a[NUM ROWS] [NUM COLS], *p, i;

for (p =
*p — O;
« Since a[1] Isa pointer to row i of the array a, we
can pass a [1] to a function that’s expecting a one-
dimensional array as Its argument.

alil]; p < a[i] + NUM COLS; pt++)

* In other words, a function that’s designed to work
with one-dimensional arrays will also work with a
row belonging to a two-dimensional array.

@ pnoanmmmc 2

A Modern AI{)IUY‘UC!C;& SECOND ED

