
Chapter 12: Pointers and Arrays

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 12

Pointers and Arrays



Chapter 12: Pointers and Arrays

Introduction

• C allows us to perform arithmetic—addition and 

subtraction—on pointers to array elements.

• This leads to an alternative way of processing 

arrays in which pointers take the place of array 

subscripts.

• The relationship between pointers and arrays in C 

is a close one.

• Understanding this relationship is critical for 

mastering C.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2



Chapter 12: Pointers and Arrays

Pointer Arithmetic

• Chapter 11 showed that pointers can point to array 

elements:

int a[10], *p;

p = &a[0];

• A graphical representation:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3



Chapter 12: Pointers and Arrays

Pointer Arithmetic

• We can now access a[0] through p; for example, 

we can store the value 5 in a[0] by writing

*p = 5;

• An updated picture:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4



Chapter 12: Pointers and Arrays

Pointer Arithmetic

• If p points to an element of an array a, the other 

elements of a can be accessed by performing 

pointer arithmetic (or address arithmetic) on p.

• C supports three (and only three) forms of pointer 

arithmetic:

– Adding an integer to a pointer

– Subtracting an integer from a pointer

– Subtracting one pointer from another

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5



Chapter 12: Pointers and Arrays

Adding an Integer to a Pointer

• Adding an integer j to a pointer p yields a pointer 

to the element j places after the one that p points 

to.

• More precisely, if p points to the array element 

a[i], then p + j points to a[i+j].

• Assume that the following declarations are in 

effect:

int a[10], *p, *q, i;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6



Chapter 12: Pointers and Arrays

Adding an Integer to a Pointer

• Example of pointer addition:

p = &a[2];

q = p + 3;

p += 6;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7



Chapter 12: Pointers and Arrays

Subtracting an Integer from a Pointer

• If p points to a[i], then p - j points to a[i-j].

• Example:

p = &a[8];

q = p - 3;

p -= 6;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8



Chapter 12: Pointers and Arrays

Subtracting One Pointer from Another

• When one pointer is subtracted from another, the result 

is the distance (measured in array elements) between the 

pointers.

• If p points to a[i] and q points to a[j], then p - q is 

equal to i - j.

• Example:

p = &a[5];

q = &a[1];

i = p - q;   /* i is 4 */

i = q - p;   /* i is -4 */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9



Chapter 12: Pointers and Arrays

Comparing Pointers

• Pointers can be compared using the relational 

operators (<, <=, >, >=) and the equality operators 

(== and !=).

– Using relational operators is meaningful only for pointers to 

elements of the same array.

• The outcome of the comparison depends on the 

relative positions of the two elements in the array.

• After the assignments
p = &a[5];

q = &a[1];

the value of p <= q is 0 and the value of p >= q is 1.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10



Chapter 12: Pointers and Arrays

Using Pointers for Array Processing

• Pointer arithmetic allows us to visit the elements 

of an array by repeatedly incrementing a pointer 

variable.

• A loop that sums the elements of an array a:

#define N 10

…

int a[N], sum, *p;

…

sum = 0;

for (p = &a[0]; p < &a[N]; p++)

sum += *p;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11



Chapter 12: Pointers and Arrays

Using Pointers for Array Processing

At the end of the first iteration:

At the end of the second iteration:

At the end of the third iteration:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12



Chapter 12: Pointers and Arrays

Combining the * and ++ Operators

• C programmers often combine the * (indirection) 

and ++ operators.

• A statement that modifies an array element and 

then advances to the next element:

a[i++] = j;

• The corresponding pointer version:

*p++ = j;

• Because the postfix version of ++ takes 

precedence over *, the compiler sees this as

*(p++) = j;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13



Chapter 12: Pointers and Arrays

Combining the * and ++ Operators

• Possible combinations of * and ++:

Expression Meaning

*p++ or *(p++) Value of expression is *p before increment;

increment p later

(*p)++ Value of expression is *p before increment;

increment *p later

*++p or *(++p) Increment p first;

value of expression is *p after increment

++*p or ++(*p) Increment *p first;

value of expression is *p after increment

• The * and -- operators mix in the same way as *

and ++.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14



Chapter 12: Pointers and Arrays

Combining the * and ++ Operators

• The most common combination of * and ++ is 

*p++, which is handy in loops.

• Instead of writing

for (p = &a[0]; p < &a[N]; p++)

sum += *p;

to sum the elements of the array a, we could write

p = &a[0];

while (p < &a[N])

sum += *p++;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15



Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer

• Suppose that a is declared as follows:

int a[10];

• Examples of using a as a pointer:

*a = 7;   /* stores 7 in a[0] */

*(a+1) = 12;   /* stores 12 in a[1] */

• In general, a + i is the same as &a[i].

– Both represent a pointer to element i of a.

• Also, *(a+i) is equivalent to a[i].

– Both represent element i itself.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16



Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer

• The fact that an array name can serve as a pointer 

makes it easier to write loops that step through an 

array.

• Original loop:

for (p = &a[0]; p < &a[N]; p++)

sum += *p;

• Simplified version:

for (p = a; p < a + N; p++)

sum += *p;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17



Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer

• Although an array name can be used as a pointer, 

it’s not possible to assign it a new value.

• Attempting to make it point elsewhere is an error:

while (*a != 0)

a++;           /*** WRONG ***/

• This is no great loss; we can always copy a into a 

pointer variable, then change the pointer variable:

p = a;

while (*p != 0)

p++;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18



Chapter 12: Pointers and Arrays

Processing the Elements

of a Multidimensional Array
• C stores two-dimensional arrays in row-major order.

• Layout of an array with r rows: 

• If p initially points to the element in row 0, column 0, 

we can visit every element in the array by 

incrementing p repeatedly.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19



Chapter 12: Pointers and Arrays

Processing the Elements

of a Multidimensional Array
• Consider the problem of initializing all elements of the following 

array to zero:

int a[NUM_ROWS][NUM_COLS];

• The obvious technique would be to use nested for loops:

int row, col;
…

for (row = 0; row < NUM_ROWS; row++)

for (col = 0; col < NUM_COLS; col++)

a[row][col] = 0;

• If we view a as a one-dimensional array of integers, a single loop 

is sufficient:

int *p;
…

for (p = &a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)

*p = 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20



Chapter 12: Pointers and Arrays

Processing the Rows

of a Multidimensional Array
• A pointer variable p can also be used for 

processing the elements in just one row of a two-

dimensional array.

• To visit the elements of row i, we’d initialize p to 

point to element 0 in row i in the array a:

p = &a[i][0];

or we could simply write

p = a[i];

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21



Chapter 12: Pointers and Arrays

Processing the Rows

of a Multidimensional Array
• A loop that clears row i of the array a:

int a[NUM_ROWS][NUM_COLS], *p, i;

…

for (p = a[i]; p < a[i] + NUM_COLS; p++)

*p = 0;

• Since a[i] is a pointer to row i of the array a, we 

can pass a[i] to a function that’s expecting a one-

dimensional array as its argument.

• In other words, a function that’s designed to work 

with one-dimensional arrays will also work with a 

row belonging to a two-dimensional array.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22


