
Chapter 13: Strings

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 13

Strings

Chapter 13: Strings

Introduction
• This chapter covers both string constants (or

literals, as they’re called in the C standard) and
string variables.

• Strings are arrays of characters in which a special
character—the null character—marks the end.

• The C library provides a collection of functions
for working with strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 13: Strings

String Literals
• A string literal is a sequence of characters enclosed within double

quotes:
"When you come to a fork in the road, take it."

• String literals may contain escape sequences.
• Character escapes often appear in printf and scanf format

strings.
• For example, each \n character in the string

"Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

causes the cursor to advance to the next line:
Candy
Is dandy
But liquor
Is quicker.

--Ogden Nash

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 13: Strings

Continuing a String Literal
• The backslash character (\) can be used to

continue a string literal from one line to the next:
printf("When you come to a fork in the road, take it. \
--Yogi Berra");

• In general, the \ character can be used to join two
or more lines of a program into a single line.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 13: Strings

Continuing a String Literal
• There’s a better way to deal with long string

literals.
• When two or more string literals are adjacent, the

compiler will join them into a single string.
• This rule allows us to split a string literal over two

or more lines:
printf("When you come to a fork in the road, take it. "

"--Yogi Berra");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 13: Strings

How String Literals Are Stored
• When a C compiler encounters a string literal of

length n in a program, it sets aside n + 1 bytes of
memory for the string.

• This memory will contain the characters in the
string, plus one extra character—the null
character—to mark the end of the string.

• The null character is a byte whose bits are all zero,
so it’s represented by the \0 escape sequence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 13: Strings

How String Literals Are Stored
• The string literal "abc" is stored as an array of

four characters:

• The string "" is stored as a single null character:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 13: Strings

Operations on String Literals
• We can use a string literal wherever C allows

a char * pointer:
char *p;

p = "abc";

• This assignment makes p point to the first
character of the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 13: Strings

Operations on String Literals
• String literals can be subscripted:
char ch;

ch = "abc"[1];

The new value of ch will be the letter b.
• A function that converts a number between 0 and

15 into the equivalent hex digit:
char digit_to_hex_char(int digit)
{
return "0123456789ABCDEF"[digit];

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 13: Strings

Operations on String Literals
• Attempting to modify a string literal causes

undefined behavior:
char *p = "abc";

*p = 'd'; /*** WRONG ***/

• A program that tries to change a string literal
may crash or behave erratically.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 13: Strings

String Literals versus Character Constants
• A string literal containing a single character isn’t

the same as a character constant.
– "a" is represented by a pointer.
– 'a' is represented by an integer.

• A legal call of printf:
printf("\n");

• An illegal call:
printf('\n'); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 13: Strings

String Variables
• Any one-dimensional array of characters can be

used to store a string.
• A string must be terminated by a null character.
• If a string variable needs to hold 80 characters, it

must be declared to have length 81:
#define STR_LEN 80
…
char str[STR_LEN+1];

• Adding 1 to the desired length allows room for the
null character at the end of the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 13: Strings

Initializing a String Variable
• A string variable can be initialized at the same

time it’s declared:
char date1[8] = "June 14";

• The compiler will automatically add a null
character so that date1 can be used as a string:

• "June 14" is not a string literal in this context.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 13: Strings

Initializing a String Variable
• If the initializer is too short to fill the string

variable, the compiler adds extra null characters:
char date2[9] = "June 14";

Appearance of date2:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 13: Strings

Initializing a String Variable
• An initializer for a string variable can’t be longer

than the variable, but it can be the same length:
char date3[7] = "June 14";

• There’s no room for the null character, so the
compiler makes no attempt to store one:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 13: Strings

Initializing a String Variable
• The declaration of a string variable may omit its

length, in which case the compiler computes it:
char date4[] = "June 14";

• The compiler sets aside eight characters for
date4, enough to store the characters in "June
14" plus a null character.

• Omitting the length of a string variable is
especially useful if the initializer is long, since
computing the length by hand is error-prone.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 13: Strings

Character Arrays versus Character Pointers
• The declaration
char date[] = "June 14";

declares date to be an array,
• The similar-looking
char *date = "June 14";

declares date to be a pointer.
• Thanks to the close relationship between arrays

and pointers, either version can be used as a string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 13: Strings

Character Arrays versus Character Pointers
• However, there are significant differences between

the two versions of date.
– In the array version, the characters stored in date can

be modified. In the pointer version, date points to a
string literal that shouldn’t be modified.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 13: Strings

Reading and Writing Strings
• Writing a string is easy using either printf or
puts.

• Reading a string is a bit harder, because the input
may be longer than the string variable into which
it’s being stored.

• To read a string in a single step, we can use either
scanf or gets.

• As an alternative, we can read strings one
character at a time.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 13: Strings

Writing Strings Using printf and puts
• The %s conversion specification allows printf to write a

string:
char str[] = "Are we having fun yet?";

printf("%s\n", str);
The output will be
Are we having fun yet?

• printf writes the characters in a string one by one until
it encounters a null character.

• The C library also provides puts: puts(str);
• After writing a string, puts always writes an additional

new-line character.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 13: Strings

Writing Strings Using printf and puts
• To print part of a string, use the conversion

specification %.ps.
• p is the number of characters to be displayed.
• The statement
printf("%.6s\n", str);

will print
Are we

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 13: Strings

Writing Strings Using printf and puts
• The %ms conversion will display a string in a field

of size m.
• If the string has fewer than m characters, it will be

right-justified within the field.
• To force left justification instead, we can put a

minus sign in front of m.
• The m and p values can be used in combination.
• A conversion specification of the form %m.ps

causes the first p characters of a string to be
displayed in a field of size m.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 13: Strings

Reading Strings Using scanf and gets
• The %s conversion specification allows scanf to

read a string into a character array:
scanf("%s", str);

• str is treated as a pointer, so there’s no need to
put the & operator in front of str.

• When scanf is called, it skips white space, then
reads characters and stores them in str until it
encounters a white-space character.

• scanf always stores a null character at the end of
the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 13: Strings

Reading Strings Using scanf and gets
• scanf won’t usually read a full line of input.
• A new-line character will cause scanf to stop

reading, and so will a space or tab character.
• To read an entire line of input, we can use gets.
• Properties of gets:

– Doesn’t skip white space before starting to read input.
– Reads until it finds a new-line character.
– Discards the new-line character instead of storing it; the

null character takes its place.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 13: Strings

Reading Strings Using scanf and gets
• Consider the following program fragment:
char sentence[SENT_LEN+1];

printf("Enter a sentence:\n");
scanf("%s", sentence);

• Suppose that after the prompt
Enter a sentence:

the user enters the line
To C, or not to C: that is the question.

• scanf will store the string "To" in sentence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 13: Strings

Reading Strings Using scanf and gets
• Suppose that we replace scanf by gets:
gets(sentence);

• When the user enters the same input as before,
gets will store the string
" To C, or not to C: that is the question."

in sentence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 13: Strings

Reading Strings Using scanf and gets
• As they read characters into an array, scanf and
gets have no way to detect when it’s full.

• Consequently, they may store characters past the
end of the array, causing undefined behavior.

• scanf can be made safer by using the conversion
specification %ns instead of %s.

• n is an integer indicating the maximum number of
characters to be stored.

• gets is inherently unsafe; fgets is a much
better alternative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 13: Strings

Accessing the Characters in a String
• A function that counts the number of spaces in a

string:
int count_spaces(const char s[])
{
int count = 0, i;

for (i = 0; s[i] != '\0'; i++)
if (s[i] == ' ')
count++;

return count;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 13: Strings

Accessing the Characters in a String
• A version that uses pointer arithmetic instead of

array subscripting :
int count_spaces(const char *s)
{
int count = 0;

for (; *s != '\0'; s++)
if (*s == ' ')
count++;

return count;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 13: Strings

Accessing the Characters in a String
• Questions raised by the count_spaces

example:
– Is it better to use array operations or pointer

operations to access the characters in a string?
We can use either or both. Traditionally, C
programmers lean toward using pointer operations.

– Should a string parameter be declared as an array or
as a pointer? There’s no difference between the two.

– Does the form of the parameter (s[] or *s) affect
what can be supplied as an argument? No.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 13: Strings

Using the C String Library
• Some programming languages provide operators

that can copy strings, compare strings, concatenate
strings, select substrings, and the like.

• C’s operators, in contrast, are essentially useless
for working with strings.

• Strings are treated as arrays in C, so they’re
restricted in the same ways as arrays.

• In particular, they can’t be copied or compared
using operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 13: Strings

Using the C String Library
• Direct attempts to copy or compare strings will fail.
• Copying a string into a character array using the =

operator is not possible:
char str1[10], str2[10];
…
str1 = "abc"; /*** WRONG ***/
str2 = str1; /*** WRONG ***/

Using an array name as the left operand of = is illegal.
• Initializing a character array using = is legal, though:

char str1[10] = "abc";

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 13: Strings

Using the C String Library
• Attempting to compare strings using a relational

or equality operator is legal but won’t produce the
desired result:
if (str1 == str2) … /*** WRONG ***/

• This statement compares str1 and str2 as
pointers.

• Since str1 and str2 have different addresses,
the expression str1 == str2 must have the
value 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 13: Strings

Using the C String Library
• The C library provides a rich set of functions for

performing operations on strings.
• Programs that need string operations should

contain the following line:
#include <string.h>

• In subsequent examples, assume that str1 and
str2 are character arrays used as strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 13: Strings

The strcpy (String Copy) Function
• Prototype for the strcpy function:
char *strcpy(char *s1, const char *s2);

• strcpy copies the string s2 into the string s1.
• strcpy returns s1 (a pointer to the destination

string).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 13: Strings

The strcpy (String Copy) Function
• In the call strcpy(str1, str2), strcpy has

no way to check that the str2 string will fit in the
array pointed to by str1.

• If it doesn’t, undefined behavior occurs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 13: Strings

The strcpy (String Copy) Function
• Calling the strncpy function is a safer, albeit

slower, way to copy a string.
• strncpy has a third argument that limits the

number of characters that will be copied.
• A call of strncpy that copies str2 into str1:
strncpy(str1, str2, sizeof(str1));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 13: Strings

The strcpy (String Copy) Function
• strncpy will leave str1 without a terminating

null character if the length of str2 is greater than
or equal to the size of the str1 array.

• A safer way to use strncpy:
strncpy(str1, str2, sizeof(str1) - 1);
str1[sizeof(str1)-1] = '\0';

• The second statement guarantees that str1 is
always null-terminated.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 13: Strings

The strlen (String Length) Function
• Prototype for the strlen function:
size_t strlen(const char *s);

• size_t is a typedef name that represents one
of C’s unsigned integer types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 13: Strings

The strlen (String Length) Function
• strlen returns the length of a string s, not

including the null character.
• Examples:
int len;

len = strlen("abc"); /* len is now 3 */
len = strlen(""); /* len is now 0 */
strcpy(str1, "abc");
len = strlen(str1); /* len is now 3 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 13: Strings

The strcat (String Concatenation) Function
• Prototype for the strcat function:

char *strcat(char *s1, const char *s2);

• strcat appends the contents of the string s2 to the end of
the string s1.

• It returns s1 (a pointer to the resulting string).
• strcat examples:

strcpy(str1, "abc");
strcat(str1, "def");
/* str1 now contains "abcdef" */

strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, str2);
/* str1 now contains "abcdef" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 13: Strings

The strcat (String Concatenation) Function
• As with strcpy, the value returned by strcat

is normally discarded.
• The following example shows how the return

value might be used:
strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, strcat(str2, "ghi"));
/* str1 now contains "abcdefghi";

str2 contains "defghi" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 13: Strings

The strcat (String Concatenation) Function
• strcat(str1, str2) causes undefined

behavior if the str1 array isn’t long enough to
accommodate the characters from str2.

• Example:
char str1[6] = "abc";

strcat(str1, "def"); /*** WRONG ***/

• str1 is limited to six characters, causing
strcat to write past the end of the array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 13: Strings

The strcat (String Concatenation) Function
• The strncat function is a safer but slower

version of strcat.
• Like strncpy, it has a third argument that limits

the number of characters it will copy.
• A call of strncat:

strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

• strncat will terminate str1 with a null
character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 13: Strings

The strcmp (String Comparison) Function
• Prototype for the strcmp function:

int strcmp(const char *s1, const char *s2);

• strcmp compares the strings s1 and s2,
returning a value less than, equal to, or greater
than 0, depending on whether s1 is less than,
equal to, or greater than s2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 13: Strings

The strcmp (String Comparison) Function
• Testing whether str1 is less than str2:

if (strcmp(str1, str2) < 0) /* is str1 < str2? */
…

• Testing whether str1 is less than or equal to
str2:
if (strcmp(str1, str2) <= 0) /* is str1 <= str2? */
…

• By choosing the proper operator (<, <=, >, >=,
==, !=), we can test any possible relationship
between str1 and str2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 13: Strings

The strcmp (String Comparison) Function
• As it compares two strings, strcmp looks at the

numerical codes for the characters in the strings.
• Some knowledge of the underlying character set is

helpful to predict what strcmp will do.
• Important properties of ASCII:

– A–Z, a–z, and 0–9 have consecutive codes.
– All upper-case letters are less than all lower-case

letters.
– Digits are less than letters.
– Spaces are less than all printing characters.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 13: Strings

Program: Printing a One-Month Reminder List
• The remind.c program prints a one-month list

of daily reminders.
• The user will enter a series of reminders, with

each prefixed by a day of the month.
• When the user enters 0 instead of a valid day, the

program will print a list of all reminders entered,
sorted by day.

• The next slide shows a session with the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 13: Strings

Program: Printing a One-Month Reminder List
Enter day and reminder: 24 Susan's birthday
Enter day and reminder: 5 6:00 - Dinner with Marge and Russ
Enter day and reminder: 26 Movie - "Chinatown"
Enter day and reminder: 7 10:30 - Dental appointment
Enter day and reminder: 12 Movie - "Dazed and Confused"
Enter day and reminder: 5 Saturday class
Enter day and reminder: 12 Saturday class
Enter day and reminder: 0

Day Reminder
5 Saturday class
5 6:00 - Dinner with Marge and Russ
7 10:30 - Dental appointment

12 Saturday class
12 Movie - "Dazed and Confused“
24 Susan's birthday
26 Movie - "Chinatown"

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 13: Strings

Program: Printing a One-Month Reminder List

• Overall strategy:
– Read a series of day-and-reminder combinations.
– Store them in order (sorted by day).
– Display them.

• scanf will be used to read the days.
• read_line will be used to read the reminders.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 13: Strings

Program: Printing a One-Month Reminder List

• The strings will be stored in a two-dimensional
array of characters.

• Each row of the array contains one string.
• Actions taken after the program reads a day and its

associated reminder:
– Search the array to determine where the day belongs,

using strcmp to do comparisons.
– Use strcpy to move all strings below that point down

one position.
– Copy the day into the array and call strcat to append

the reminder to the day.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 13: Strings

Program: Printing a One-Month Reminder List

• One complication: how to right-justify the days in
a two-character field.

• A solution: use scanf to read the day into an
integer variable, then call sprintf to convert the
day back into string form.

• sprintf is similar to printf, except that it
writes output into a string.

• The call
sprintf(day_str, "%2d", day);

writes the value of day into day_str.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 13: Strings

Program: Printing a One-Month Reminder List
• The following call of scanf ensures that the user

doesn’t enter more than two digits:
scanf("%2d", &day);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 13: Strings

remind.c
/* Prints a one-month reminder list */

#include <stdio.h>
#include <string.h>

#define MAX_REMIND 50 /* maximum number of reminders */
#define MSG_LEN 60 /* max length of reminder message */

int read_line(char str[], int n);

int main(void)
{
char reminders[MAX_REMIND][MSG_LEN+3];
char day_str[3], msg_str[MSG_LEN+1];
int day, i, j, num_remind = 0;

for (;;) {
if (num_remind == MAX_REMIND) {
printf("-- No space left --\n");
break;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 13: Strings

printf("Enter day and reminder: ");
scanf("%2d", &day);
if (day == 0)
break;

sprintf(day_str, "%2d", day);
read_line(msg_str, MSG_LEN);

for (i = 0; i < num_remind; i++)
if (strcmp(day_str, reminders[i]) < 0)
break;

for (j = num_remind; j > i; j--)
strcpy(reminders[j], reminders[j-1]);

strcpy(reminders[i], day_str);
strcat(reminders[i], msg_str);

num_remind++;
}

printf("\nDay Reminder\n");
for (i = 0; i < num_remind; i++)
printf(" %s\n", reminders[i]);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 13: Strings

int read_line(char str[], int n)
{

int ch, i = 0;

while ((ch = getchar()) != '\n')
if (i < n)
str[i++] = ch;

str[i] = '\0';
return i;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

