Chapter 14

The Preprocessor

@ PROGRAMMII\IG 1

A Modern Approach secowo eo

Introduction

Directives such as #define and #include are
handled by the preprocessor, a piece of software
that edits C programs just prior to compilation.

Its reliance on a preprocessor makes C (along with
C++) unigue among major programming
languages.

The preprocessor Is a powerful tool, but it also can
be a source of hard-to-find bugs.

C PROGRANMMING 2

A Modern Approach secono eoimon

How the Preprocessor Works

« The preprocessor looks for preprocessing directives,
which begin with a # character.

 We’ve encountered the #define and #include
directives before.

« #define defines a macro—a name that represents
something else, such as a constant.

» The preprocessor responds to a #define directive by
storing the name of the macro along with its
definition.

* When the macro is used later, the preprocessor
“expands” the macro, replacing it by its defined value.
C PROGRANMMING 3

A Modern Approach secowo eoimion

How the Preprocessor Works

e #include tells the preprocessor to open a

particular file and “include” 1ts contents as part of
the file being compiled.

* For example, the line

#include <stdio.h>

Instructs the preprocessor to open the file named
stdio.h and bring its contents into the program.

C PROGRANMMING 4

A Modern Approach secowo eoimion

How the Preprocessor Works

* The preprocessor’s role 1n the compilation

Process.
C program

v

Preprocessor

v

Modified C program

v

Compiler

Object code
C PROGRAMMII\IG 5

A Modern Approach secowo

How the Preprocessor Works

« The Input to the preprocessor is a C program,
possibly containing directives.

» The preprocessor executes these directives,
removing them in the process.

* The preprocessor’s output goes directly into the
compiler.

@ PROGRAMMII\IG 6

A Modern AI{)IUY‘UC!C;& SECOND ED

How the Preprocessor Works

« The celsius.c program of Chapter 2:

/* Converts a Fahrenheit temperature to Celsius */
#include <stdio.h>

#define FREEZING PT 32.0f
#define SCALE FACTOR (5.0f / 9.0f)

int main(void)

{

float fahrenheit, celsius;

printf ("Enter Fahrenheit temperature: ");
scanf ("$f", &fahrenheit);

celsius = (fahrenheilit - FREEZING PT) * SCALE FACTOR;
printf ("Celsius equivalent is: %$.1f\n", celsius);

return 0;

}
C PROGRANMMING 7

A Modern A}()p'T'U(LCIl- SECOND EDITION

How the Preprocessor Works

 The program after preprocessing:

Blank line

Blank line

Lines brought in from stdio.h
Blank line

Blank line

Blank line

Blank line

int main(void)

{

float fahrenheit, celsius;

printf ("Enter Fahrenheit temperature: ");
scanf ("%f", &fahrenheit);

celsius = (fahrenheit - 32.0f) * (5.0f / 9.0f);
printf ("Celsius equivalent is: %$.1f\n", celsius);

return 0O;

)
C PROGRAMMII\IG :

A Modern Approach secowo eoimion

Preprocessing Directives

» Most preprocessing directives fall into one of
three categories:

— Macro definition. The #define directive defines a
macro; the #undef directive removes a macro
definition.

— File inclusion. The #include directive causes the
contents of a specified file to be included in a program.

— Conditional compilation. The #1if, #ifdef,
#ifndef, #elif, #else, and #endi £ directives

allow blocks of text to be either included in or excluded
from a program.

C PROGRANMMING o

A Modern Approach secowo eoimion

Preprocessing Directives

 Directives can appear anywhere in a program.

Although #define and #include directives

usually appear at the beginning of a file, other
directives are more likely to show up later.

« Comments may appear on the same line as a
directive.

It’s good practice to put a comment at the end of

a macro definition:
#define FREEZING PT 32.0f /* freezing point of water */

C PROGRANMMING 10

A Modern Approach secowo eoimion

Macro Definitions

* The macros that we’ve been using since Chapter 2

are known as simple macros, because they have no
parameters.

* The preprocessor also supports parameterized
macros.

C PROGRANMMING 1

A Modern Approach secowo eoimion

Simple Macros

« Simple macros are primarily used for defining
“manifest constants”—names that represent
numeric, character, and string values:
#define STR LEN 80

#define TRUE 1
#define FALSE 0
#define PI 3.14159
#define CR "\r'
#define EOS "\O"

#define MEM ERR "Error: not enough memory"

C PROGRANMMING 12

A Modern Approach secowo eoimion

Simple Macros

 Advantages of using #define to create names

for constants:

— It makes programs easier to read. The name of the
macro can help the reader understand the meaning of

the constant.

— It makes programs easier to modify. We can change
the value of a constant throughout a program by
modifying a single macro definition.

— It helps avoid inconsistencies and typographical
errors. If a numerical constant like 3.14159 appears
many times in a program, chances are it will
occasionally be written 3.1416 or 3.14195 by accident.

C PROGRANMMING 13

A Modern Approach secono eoimon

Parameterized Macros

Examples of parameterized macros:

#fdefine MAX(x,Y) ((x)>(y)?2(x):(y))
#define IS EVEN(n) ((n)%2==0)
Invocations of these macros:

1 = MAX(J+k, m-n);

if (IS EVEN(i)) i++;

The same lines after macro replacement:

1 = ((3tk)>(m-n)?(3+k) : (m—-n));

if (((1)%2==0)) i++;

@ pnoanmmmc 14

A Modern AI{)IUY‘UC!C;& SECOND ED

The #if and #endif Directives

General form of the #1if and #endi £ directives:

#if constant-expression
#endif

When the preprocessor encounters the #1if
directive, it evaluates the constant expression.

If the value of the expression is zero, the lines
between #1if and #endi £ will be removed from
the program during preprocessing.

Otherwise, the lines between #1if and #endif
will remain.

C PROGRANMMING 15

A Modern Approach secowo eoimion

The #if and #endif Directives

 The first step Is to define a macro and give it a
nonzero value:

#define DEBUG 1

« Next, surround a group of printf calls by an
#if-#endif palr:
#if DEBUG
printf ("Value of i: %d\n", 1i);

printf ("Value of j: %d\n", J);
#endif

C PROGRAMMII\IG 16

A Modern Approach secowo

The #if and #endif Directives

 During preprocessing, the #1 £ directive will test
the value of DEBUG.

* Since 1ts value 1sn’t zero, the preprocessor will
leave the two calls of print £ in the program.
» |f we change the value of DEBUG to zero and

recompile the program, the preprocessor will
remove all four lines from the program.

C PROGRANMMING 17

A Modern Approach secowo eoimion

The #ifdef and #ifndef Directives

The #1fdef directive tests whether an identifier
IS currently defined as a macro:

#ifdef 1dentifier

The effect Is the same as

#if defined (identifier)

The #1fndef directive tests whether an identifier
IS not currently defined as a macro:

#1ifndef I1dentifier

The effect 1s the same as

#if !defined (identifier)

@ pnoanmmmc 18

A Modern AI{)IUY‘UC!C;& SECOND ED

The #elif and #else Directives

« #if, #ifdef, and #1fndef blocks can be
nested just like ordinary i f£ statements.

* When nesting occurs, 1t’s a good 1dea to use an
Increasing amount of indentation as the level of
nesting grows.

« Some programmers put a comment on each closing
#endi f to Indicate what condition the matching

#1 f tests:
4#1f DEBRUG

#endif /* DEBUG */
C PROGRANMMING 19

A Modern Approach secowo eoimion

The #elif and #else Directives

 #elif and #else can be used in conjunction with
#if, #ifdef, or #ifndef to test a series of

conditions:

#1if exprl

Lines to be included if exprl is nonzero

#elif expr2

Lines to be included if exprl is zero but expr2 is nonzero
#else

Lines to be included otherwise

#endif

« Any number of #e11f directives—>but at most one
#else—may appear between #if and #endif.
C PROGRANMMING 20

A Modern Approach secowo eoimion

Chapter 15

Writing Large Programs

C PROGRANMMING 1

A Modern Approach secowo eoirion

Source Files

A C program may be divided among any number
of source files.

By convention, source files have the extension . c.

Each source file contains part of the program,
primarily definitions of functions and variables.

One source file must contain a function named
main, Which serves as the starting point for the

program.

C PROGRANMMING 2

A Modern Approach secono evirion

Building a Multiple-File Program

 Building a large program requires the same basic
steps as building a small one:
— Compiling
— Linking

C PROGRANMMING 3

A Modern Approach sccowno toimion

Building a Multiple-File Program

Each source file in the program must be compiled
separately.

Header files don’t need to be compiled.

The contents of a header file are automatically
compiled whenever a source file that includes it is
compiled.

For each source file, the compiler generates a file
containing object code.

These files—known as object files—have the
extension .o In UNIX and . obj In Windows.

C PROGRANMMING 4

A Modern Approach secowo eoirion

Building a Multiple-File Program

The linker combines the object files created in the
previous step—along with code for library
functions—to produce an executable file.

Among other duties, the linker is responsible for
resolving external references left behind by the
compiler.

An external reference occurs when a function In
one file calls a function defined in another file or
accesses a varilable defined in another file.

C PROGRANMMING 5

A Modern Approach secowo eoirion

Building a Multiple-File Program

Most compilers allow us to build a program in a
single step.
A GCC command that builds justify:

gcc —-o justify jJustify.c line.c word.c

The three source files are first compiled into
object code.

The object files are then automatically passed to
the linker, which combines them into a single file.

The —o option specifies that we want the
executable file to be named justify.

C PROGRANMMING 6

A Modern Approach secowo eoirion

Makefiles

To make it easier to build large programs, UNIX
originated the concept of the makefile.

A makefile not only lists the files that are part of
the program, but also describes dependencies
among the files.

Suppose that the file foo. c Includes the file
bar.h.

We say that foo.c “depends” on bar.h,
because a change to bar . h will require us to
recompile foo.c.

C PROGRANMMING 7

A Modern Approach secono evirion

Makefiles
« A UNIX makefile for the justify program:

Justify: justify.o word.o line.o
gcc —-o justify justify.o word.o line.o

justify.o: justify.c word.h line.h
gcc —-c¢ justify.c

word.o: word.c word.h
gcc —-c word.c

line.o: line.c line.h
gcc —-c line.c

C PROGRANMMING g

A Modern A}();OT'OC&C;& SECOND EDITION

Makefiles

» There are four groups of lines; each group is
known as a rule.

« The first line in each rule gives a target file,
followed by the files on which it depends.

« The second line is a command to be executed if
the target should need to be rebuilt because of a
change to one of its dependent files.

C PROGRANMMING o

A Modern Approach secono evirion

Makefiles

In the first rule, Jjustify (the executable file) is the
target:

Justify: jJustify.o word.o line.o
gcc —-o justify justify.o word.o line.o

The first line states that justify depends on the
files justify.o,word.o,and 1ine.o.

If any of these files have changed since the program
was last built, justify needs to be rebuilt.

The command on the following line shows how the
rebuilding iIs to be done.

C PROGRANMMING 10

A Modern Approach secowo eoirion

Makefiles

In the second rule, justify. o Is the target:

justify.o: justify.c word.h line.h
gcc —-c justify.c

The first line indicates that justify.o needsto

be rebuilt 1f there’s been a change to
justify.c,word.h,0r 1ine.h.

The next line shows how to update justify.o
(by recompiling justify.c).

The —c option tells the compiler to compile
justify.c butnotattempt to link it.

C PROGRANMMING 1

A Modern Approach secono evirion

Makefiles

Once we’ve created a makefile for a program, we
can use the make utility to build (or rebuild) the

program.
By checking the time and date associated with
each file in the program, make can determine
which files are out of date.

It then invokes the commands necessary to rebuild
the program.

C PROGRANMMING 12

A Modern Approach secono evirion

Makefiles

« Each command in a makefile must be preceded by
a tab character, not a series of spaces.

* A makefile is normally stored in a file named
Makefile (Ormakefile).

* When the make utility Is used, it automatically
checks the current directory for a file with one of
these names.

C PROGRANMMING 13

A Modern Approach secono evirion

Makefiles

To invoke make, use the command
make target

where target is one of the targets listed in the
makefile.

If no target Is specified when make Is invoked, It
will build the target of the first rule.

Except for this special property of the first rule,
the order of rules in a makefile is arbitrary.

C PROGRANMMING 14

A Modern Approach secono evirion

	ch14
	ch15

