
Chapter 14: The Preprocessor

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 14

The Preprocessor

Chapter 14: The Preprocessor

Introduction
• Directives such as #define and #include are

handled by the preprocessor, a piece of software
that edits C programs just prior to compilation.

• Its reliance on a preprocessor makes C (along with
C++) unique among major programming
languages.

• The preprocessor is a powerful tool, but it also can
be a source of hard-to-find bugs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 14: The Preprocessor

How the Preprocessor Works
• The preprocessor looks for preprocessing directives,

which begin with a # character.
• We’ve encountered the #define and #include

directives before.
• #define defines a macro—a name that represents

something else, such as a constant.
• The preprocessor responds to a #define directive by

storing the name of the macro along with its
definition.

• When the macro is used later, the preprocessor
“expands” the macro, replacing it by its defined value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 14: The Preprocessor

How the Preprocessor Works
• #include tells the preprocessor to open a

particular file and “include” its contents as part of
the file being compiled.

• For example, the line
#include <stdio.h>

instructs the preprocessor to open the file named
stdio.h and bring its contents into the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 14: The Preprocessor

How the Preprocessor Works
• The preprocessor’s role in the compilation

process:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 14: The Preprocessor

How the Preprocessor Works
• The input to the preprocessor is a C program,

possibly containing directives.
• The preprocessor executes these directives,

removing them in the process.
• The preprocessor’s output goes directly into the

compiler.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 14: The Preprocessor

How the Preprocessor Works
• The celsius.c program of Chapter 2:
/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;
printf("Celsius equivalent is: %.1f\n", celsius);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 14: The Preprocessor

How the Preprocessor Works
• The program after preprocessing:
Blank line
Blank line
Lines brought in from stdio.h
Blank line
Blank line
Blank line
Blank line
int main(void)
{
float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &fahrenheit);

celsius = (fahrenheit - 32.0f) * (5.0f / 9.0f);
printf("Celsius equivalent is: %.1f\n", celsius);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 14: The Preprocessor

Preprocessing Directives
• Most preprocessing directives fall into one of

three categories:
– Macro definition. The #define directive defines a

macro; the #undef directive removes a macro
definition.

– File inclusion. The #include directive causes the
contents of a specified file to be included in a program.

– Conditional compilation. The #if, #ifdef,
#ifndef, #elif, #else, and #endif directives
allow blocks of text to be either included in or excluded
from a program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 14: The Preprocessor

Preprocessing Directives
• Directives can appear anywhere in a program.

Although #define and #include directives
usually appear at the beginning of a file, other
directives are more likely to show up later.

• Comments may appear on the same line as a
directive.
It’s good practice to put a comment at the end of
a macro definition:

#define FREEZING_PT 32.0f /* freezing point of water */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 14: The Preprocessor

Macro Definitions
• The macros that we’ve been using since Chapter 2

are known as simple macros, because they have no
parameters.

• The preprocessor also supports parameterized
macros.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 14: The Preprocessor

Simple Macros
• Simple macros are primarily used for defining

“manifest constants”—names that represent
numeric, character, and string values:
#define STR_LEN 80
#define TRUE 1
#define FALSE 0
#define PI 3.14159
#define CR '\r'
#define EOS '\0'
#define MEM_ERR "Error: not enough memory"

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 14: The Preprocessor

Simple Macros
• Advantages of using #define to create names

for constants:
– It makes programs easier to read. The name of the

macro can help the reader understand the meaning of
the constant.

– It makes programs easier to modify. We can change
the value of a constant throughout a program by
modifying a single macro definition.

– It helps avoid inconsistencies and typographical
errors. If a numerical constant like 3.14159 appears
many times in a program, chances are it will
occasionally be written 3.1416 or 3.14195 by accident.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 14: The Preprocessor

Parameterized Macros
• Examples of parameterized macros:
#define MAX(x,y) ((x)>(y)?(x):(y))
#define IS_EVEN(n) ((n)%2==0)

• Invocations of these macros:
i = MAX(j+k, m-n);
if (IS_EVEN(i)) i++;

• The same lines after macro replacement:
i = ((j+k)>(m-n)?(j+k):(m-n));
if (((i)%2==0)) i++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 14: The Preprocessor

The #if and #endif Directives
• General form of the #if and #endif directives:
#if constant-expression
#endif

• When the preprocessor encounters the #if
directive, it evaluates the constant expression.

• If the value of the expression is zero, the lines
between #if and #endif will be removed from
the program during preprocessing.

• Otherwise, the lines between #if and #endif
will remain.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 14: The Preprocessor

The #if and #endif Directives
• The first step is to define a macro and give it a

nonzero value:
#define DEBUG 1

• Next, surround a group of printf calls by an
#if-#endif pair:
#if DEBUG
printf("Value of i: %d\n", i);
printf("Value of j: %d\n", j);
#endif

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 14: The Preprocessor

The #if and #endif Directives
• During preprocessing, the #if directive will test

the value of DEBUG.
• Since its value isn’t zero, the preprocessor will

leave the two calls of printf in the program.
• If we change the value of DEBUG to zero and

recompile the program, the preprocessor will
remove all four lines from the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 14: The Preprocessor

The #ifdef and #ifndef Directives
• The #ifdef directive tests whether an identifier

is currently defined as a macro:
#ifdef identifier

• The effect is the same as
#if defined(identifier)

• The #ifndef directive tests whether an identifier
is not currently defined as a macro:
#ifndef identifier

• The effect is the same as
#if !defined(identifier)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 14: The Preprocessor

The #elif and #else Directives
• #if, #ifdef, and #ifndef blocks can be

nested just like ordinary if statements.
• When nesting occurs, it’s a good idea to use an

increasing amount of indentation as the level of
nesting grows.

• Some programmers put a comment on each closing
#endif to indicate what condition the matching
#if tests:
#if DEBUG
…
#endif /* DEBUG */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 14: The Preprocessor

The #elif and #else Directives
• #elif and #else can be used in conjunction with
#if, #ifdef, or #ifndef to test a series of
conditions:
#if expr1
Lines to be included if expr1 is nonzero
#elif expr2
Lines to be included if expr1 is zero but expr2 is nonzero
#else
Lines to be included otherwise
#endif

• Any number of #elif directives—but at most one
#else—may appear between #if and #endif.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 15: Writing Large Programs

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 15

Writing Large Programs

Chapter 15: Writing Large Programs

Source Files
• A C program may be divided among any number

of source files.
• By convention, source files have the extension .c.
• Each source file contains part of the program,

primarily definitions of functions and variables.
• One source file must contain a function named
main, which serves as the starting point for the
program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 15: Writing Large Programs

Building a Multiple-File Program
• Building a large program requires the same basic

steps as building a small one:
– Compiling
– Linking

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 15: Writing Large Programs

Building a Multiple-File Program
• Each source file in the program must be compiled

separately.
• Header files don’t need to be compiled.
• The contents of a header file are automatically

compiled whenever a source file that includes it is
compiled.

• For each source file, the compiler generates a file
containing object code.

• These files—known as object files—have the
extension .o in UNIX and .obj in Windows.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 15: Writing Large Programs

Building a Multiple-File Program
• The linker combines the object files created in the

previous step—along with code for library
functions—to produce an executable file.

• Among other duties, the linker is responsible for
resolving external references left behind by the
compiler.

• An external reference occurs when a function in
one file calls a function defined in another file or
accesses a variable defined in another file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 15: Writing Large Programs

Building a Multiple-File Program
• Most compilers allow us to build a program in a

single step.
• A GCC command that builds justify:
gcc -o justify justify.c line.c word.c

• The three source files are first compiled into
object code.

• The object files are then automatically passed to
the linker, which combines them into a single file.

• The -o option specifies that we want the
executable file to be named justify.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 15: Writing Large Programs

Makefiles
• To make it easier to build large programs, UNIX

originated the concept of the makefile.
• A makefile not only lists the files that are part of

the program, but also describes dependencies
among the files.

• Suppose that the file foo.c includes the file
bar.h.

• We say that foo.c “depends” on bar.h,
because a change to bar.h will require us to
recompile foo.c.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 15: Writing Large Programs

Makefiles
• A UNIX makefile for the justify program:
justify: justify.o word.o line.o

gcc -o justify justify.o word.o line.o

justify.o: justify.c word.h line.h
gcc -c justify.c

word.o: word.c word.h
gcc -c word.c

line.o: line.c line.h
gcc -c line.c

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 15: Writing Large Programs

Makefiles
• There are four groups of lines; each group is

known as a rule.
• The first line in each rule gives a target file,

followed by the files on which it depends.
• The second line is a command to be executed if

the target should need to be rebuilt because of a
change to one of its dependent files.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 15: Writing Large Programs

Makefiles
• In the first rule, justify (the executable file) is the

target:
justify: justify.o word.o line.o

gcc -o justify justify.o word.o line.o

• The first line states that justify depends on the
files justify.o, word.o, and line.o.

• If any of these files have changed since the program
was last built, justify needs to be rebuilt.

• The command on the following line shows how the
rebuilding is to be done.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 15: Writing Large Programs

Makefiles
• In the second rule, justify.o is the target:
justify.o: justify.c word.h line.h

gcc -c justify.c

• The first line indicates that justify.o needs to
be rebuilt if there’s been a change to
justify.c, word.h, or line.h.

• The next line shows how to update justify.o
(by recompiling justify.c).

• The -c option tells the compiler to compile
justify.c but not attempt to link it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 15: Writing Large Programs

Makefiles
• Once we’ve created a makefile for a program, we

can use the make utility to build (or rebuild) the
program.

• By checking the time and date associated with
each file in the program, make can determine
which files are out of date.

• It then invokes the commands necessary to rebuild
the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 15: Writing Large Programs

Makefiles
• Each command in a makefile must be preceded by

a tab character, not a series of spaces.
• A makefile is normally stored in a file named
Makefile (or makefile).

• When the make utility is used, it automatically
checks the current directory for a file with one of
these names.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 15: Writing Large Programs

Makefiles
• To invoke make, use the command
make target
where target is one of the targets listed in the
makefile.

• If no target is specified when make is invoked, it
will build the target of the first rule.

• Except for this special property of the first rule,
the order of rules in a makefile is arbitrary.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

