
Chapter 16: Structures, Unions, and Enumerations

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 16

Structures, Unions,

and Enumerations

Chapter 16: Structures, Unions, and Enumerations

Structure Variables

• The properties of a structure are different from

those of an array.

– The elements of a structure (its members) aren’t

required to have the same type.

– The members of a structure have names; to select a

particular member, we specify its name, not its position.

• In some languages, structures are called records,

and members are known as fields.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables

• A structure is a logical choice for storing a

collection of related data items.

• A declaration of two structure variables that store

information about parts in a warehouse:

struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables

• The members of a structure are

stored in memory in the order in

which they’re declared.

• Appearance of part1

• Assumptions:

– part1 is located at address 2000.

– Integers occupy four bytes.

– NAME_LEN has the value 25.

– There are no gaps between the

members.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables

• Abstract representations of a structure:

• Member values will go in the boxes later.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables

• Each structure represents a new scope.

• Any names declared in that scope won’t conflict

with other names in a program.

• In C terminology, each structure has a separate

name space for its members.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables

• For example, the following declarations can

appear in the same program:

struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

struct {

char name[NAME_LEN+1];

int number;

char sex;

} employee1, employee2;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 16: Structures, Unions, and Enumerations

Initializing Structure Variables

• A structure declaration may include an initializer:

struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1 = {528, "Disk drive", 10},

part2 = {914, "Printer cable", 5};

• Appearance of part1 after initialization:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 16: Structures, Unions, and Enumerations

Initializing Structure Variables

• Structure initializers follow rules similar to those

for array initializers.

• Expressions used in a structure initializer must be

constant. (This restriction is relaxed in C99.)

• An initializer can have fewer members than the

structure it’s initializing.

• Any “leftover” members are given 0 as their initial

value.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 16: Structures, Unions, and Enumerations

Designated Initializers (C99)

• C99’s designated initializers can be used with

structures.

• The initializer for part1 shown in the previous

example:

{528, "Disk drive", 10}

• In a designated initializer, each value would be labeled

by the name of the member that it initializes:

{.number = 528, .name = "Disk drive", .on_hand = 10}

• The combination of the period and the member name

is called a designator.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 16: Structures, Unions, and Enumerations

Designated Initializers (C99)

• Designated initializers are easier to read and check

for correctness.

• Also, values in a designated initializer don’t have

to be placed in the same order that the members

are listed in the structure.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 16: Structures, Unions, and Enumerations

Designated Initializers (C99)

• Not all values listed in a designated initializer

need be prefixed by a designator.

• Example:

{.number = 528, "Disk drive", .on_hand = 10}

The compiler assumes that "Disk drive"

initializes the member that follows number in the

structure.

• Any members that the initializer fails to account

for are set to zero.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures

• To access a member within a structure, we write

the name of the structure first, then a period, then

the name of the member.

• Statements that display the values of part1’s

members:

printf("Part number: %d\n", part1.number);

printf("Part name: %s\n", part1.name);

printf("Quantity on hand: %d\n", part1.on_hand);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures

• The members of a structure are lvalues.

• They can appear on the left side of an assignment

or as the operand in an increment or decrement

expression:

part1.number = 258;

/* changes part1's part number */

part1.on_hand++;

/* increments part1's quantity on hand */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures

• The period used to access a structure member is

actually a C operator.

• It takes precedence over nearly all other operators.

• Example:

scanf("%d", &part1.on_hand);

The . operator takes precedence over the &

operator, so & computes the address of

part1.on_hand.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures

• The other major structure operation is assignment:

part2 = part1;

• The effect of this statement is to copy
part1.number into part2.number,

part1.name into part2.name, and so on.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures

• Arrays can’t be copied using the = operator, but an

array embedded within a structure is copied when

the enclosing structure is copied.

• Some programmers exploit this property by

creating “dummy” structures to enclose arrays that

will be copied later:

struct { int a[10]; } a1, a2;

a1 = a2;

/* legal, since a1 and a2 are structures */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures

• The = operator can be used only with structures of

compatible types.

• Two structures declared at the same time (as
part1 and part2 were) are compatible.

• Structures declared using the same “structure tag”

or the same type name are also compatible.

• Other than assignment, C provides no operations

on entire structures.

• In particular, the == and != operators can’t be

used with structures.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 16: Structures, Unions, and Enumerations

Structure Types

• Suppose that a program needs to declare several

structure variables with identical members.

• We need a name that represents a type of structure,

not a particular structure variable.

• Ways to name a structure:

– Declare a “structure tag”

– Use typedef to define a type name

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag

• A structure tag is a name used to identify a

particular kind of structure.

• The declaration of a structure tag named part:

struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

};

• Note that a semicolon must follow the right brace.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag

• The part tag can be used to declare variables:

struct part part1, part2;

• We can’t drop the word struct:

part part1, part2; /*** WRONG ***/

part isn’t a type name; without the word

struct, it is meaningless.

• Since structure tags aren’t recognized unless
preceded by the word struct, they don’t conflict

with other names used in a program.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag

• All structures declared to have type struct

part are compatible with one another:

struct part part1 = {528, "Disk drive", 10};

struct part part2;

part2 = part1;

/* legal; both parts have the same type */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 16: Structures, Unions, and Enumerations

Defining a Structure Type

• As an alternative to declaring a structure tag, we
can use typedef to define a genuine type name.

• A definition of a type named Part:

typedef struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} Part;

• Part can be used in the same way as the built-in

types:

Part part1, part2;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values

• Functions may have structures as arguments and

return values.

• A function with a structure argument:

void print_part(struct part p)

{

printf("Part number: %d\n", p.number);

printf("Part name: %s\n", p.name);

printf("Quantity on hand: %d\n", p.on_hand);

}

• A call of print_part:

print_part(part1);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values

• A function that returns a part structure:

struct part build_part(int number,

const char *name,

int on_hand)
{

struct part p;

p.number = number;

strcpy(p.name, name);

p.on_hand = on_hand;

return p;
}

• A call of build_part:

part1 = build_part(528, "Disk drive", 10);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 16: Structures, Unions, and Enumerations

Nested Arrays and Structures

• Structures and arrays can be combined without

restriction.

• Arrays may have structures as their elements, and

structures may contain arrays and structures as

members.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 16: Structures, Unions, and Enumerations

Nested Structures

• Nesting one structure inside another is often

useful.

• Suppose that person_name is the following

structure:

struct person_name {

char first[FIRST_NAME_LEN+1];

char middle_initial;

char last[LAST_NAME_LEN+1];

};

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 16: Structures, Unions, and Enumerations

Nested Structures

• We can use person_name as part of a larger

structure:

struct student {

struct person_name name;

int id, age;

char sex;

} student1, student2;

• Accessing student1’s first name, middle initial,

or last name requires two applications of the .

operator:

strcpy(student1.name.first, "Fred");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 16: Structures, Unions, and Enumerations

Nested Structures

• Having name be a structure makes it easier to treat

names as units of data.

• A function that displays a name could be passed one

person_name argument instead of three arguments:

display_name(student1.name);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

Chapter 16: Structures, Unions, and Enumerations

Arrays of Structures

• One of the most common combinations of arrays

and structures is an array whose elements are

structures.

• This kind of array can serve as a simple database.

• An array of part structures capable of storing

information about 100 parts:

struct part inventory[100];

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
30

Chapter 16: Structures, Unions, and Enumerations

Arrays of Structures

• Accessing a part in the array is done by using

subscripting:

print_part(inventory[i]);

• Accessing a member within a part structure

requires a combination of subscripting and member

selection:

inventory[i].number = 883;

• Accessing a single character in a part name

requires subscripting, followed by member

selection, followed by subscripting:

inventory[i].name[0] = '\0';

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
31

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures

• Initializing an array of structures is done in much

the same way as initializing a multidimensional

array.

• Each structure has its own brace-enclosed

initializer; the array initializer wraps another set of

braces around the structure initializers.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
32

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures

• One reason for initializing an array of structures is

that it contains information that won’t change

during program execution.

• Example: an array that contains country codes

used when making international telephone calls.

• The elements of the array will be structures that

store the name of a country along with its code:

struct dialing_code {

char *country;

int code;

};

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
33

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures
const struct dialing_code country_codes[] =

{{"Argentina", 54}, {"Bangladesh", 880},

{"Brazil", 55}, {"Burma (Myanmar)", 95},

{"China", 86}, {"Colombia", 57},

{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},

{"Ethiopia", 251}, {"France", 33},

{"Germany", 49}, {"India", 91},

{"Indonesia", 62}, {"Iran", 98},

{"Italy", 39}, {"Japan", 81},

{"Mexico", 52}, {"Nigeria", 234},

{"Pakistan", 92}, {"Philippines", 63},

{"Poland", 48}, {"Russia", 7},

{"South Africa", 27}, {"South Korea", 82},

{"Spain", 34}, {"Sudan", 249},

{"Thailand", 66}, {"Turkey", 90},

{"Ukraine", 380}, {"United Kingdom", 44},

{"United States", 1}, {"Vietnam", 84}};

• The inner braces around each structure value are optional.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
34

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

• The inventory.c program illustrates how

nested arrays and structures are used in practice.

• The program tracks parts stored in a warehouse.

• Information about the parts is stored in an array of

structures.

• Contents of each structure:

– Part number

– Name

– Quantity

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
35

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

• Operations supported by the program:

– Add a new part number, part name, and initial quantity

on hand

– Given a part number, print the name of the part and the

current quantity on hand

– Given a part number, change the quantity on hand

– Print a table showing all information in the database

– Terminate program execution

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
36

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

• The codes i (insert), s (search), u (update), p (print),

and q (quit) will be used to represent these operations.

• A session with the program:

Enter operation code: i

Enter part number: 528

Enter part name: Disk drive

Enter quantity on hand: 10

Enter operation code: s

Enter part number: 528

Part name: Disk drive

Quantity on hand: 10

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
37

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

Enter operation code: s

Enter part number: 914

Part not found.

Enter operation code: i

Enter part number: 914

Enter part name: Printer cable

Enter quantity on hand: 5

Enter operation code: u

Enter part number: 528

Enter change in quantity on hand: -2

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
38

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

Enter operation code: s

Enter part number: 528

Part name: Disk drive

Quantity on hand: 8

Enter operation code: p

Part Number Part Name Quantity on Hand

528 Disk drive 8

914 Printer cable 5

Enter operation code: q

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
39

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

• The program will store information about each

part in a structure.

• The structures will be stored in an array named
inventory.

• A variable named num_parts will keep track of

the number of parts currently stored in the array.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
40

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

• An outline of the program’s main loop:

for (;;) {

prompt user to enter operation code;

read code;

switch (code) {

case 'i': perform insert operation; break;

case 's': perform search operation; break;

case 'u': perform update operation; break;

case 'p': perform print operation; break;

case 'q': terminate program;

default: print error message;
}

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
41

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

• Separate functions will perform the insert, search,

update, and print operations.

• Since the functions will all need access to
inventory and num_parts, these variables will

be external.

• The program is split into three files:

– inventory.c (the bulk of the program)

– readline.h (contains the prototype for the

read_line function)

– readline.c (contains the definition of read_line)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
42

Chapter 16: Structures, Unions, and Enumerations

inventory.c

/* Maintains a parts database (array version) */

#include <stdio.h>

#include "readline.h"

#define NAME_LEN 25

#define MAX_PARTS 100

struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

} inventory[MAX_PARTS];

int num_parts = 0; /* number of parts currently stored */

int find_part(int number);

void insert(void);

void search(void);

void update(void);

void print(void);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
43

Chapter 16: Structures, Unions, and Enumerations

/**

* main: Prompts the user to enter an operation code, *

* then calls a function to perform the requested *

* action. Repeats until the user enters the *

* command 'q'. Prints an error message if the user *

* enters an illegal code. *

**/

int main(void)

{

char code;

for (;;) {

printf("Enter operation code: ");

scanf(" %c", &code);

while (getchar() != '\n') /* skips to end of line */

;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
44

Chapter 16: Structures, Unions, and Enumerations

switch (code) {

case 'i': insert();

break;

case 's': search();

break;

case 'u': update();

break;

case 'p': print();

break;

case 'q': return 0;

default: printf("Illegal code\n");

}

printf("\n");

}

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
45

Chapter 16: Structures, Unions, and Enumerations

/**

* find_part: Looks up a part number in the inventory *

* array. Returns the array index if the part *

* number is found; otherwise, returns -1. *

**/

int find_part(int number)

{

int i;

for (i = 0; i < num_parts; i++)

if (inventory[i].number == number)

return i;

return -1;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
46

Chapter 16: Structures, Unions, and Enumerations

/**

* insert: Prompts the user for information about a new *

* part and then inserts the part into the *

* database. Prints an error message and returns *

* prematurely if the part already exists or the *

* database is full. *

**/

void insert(void)

{

int part_number;

if (num_parts == MAX_PARTS) {

printf("Database is full; can't add more parts.\n");

return;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
47

Chapter 16: Structures, Unions, and Enumerations

printf("Enter part number: ");

scanf("%d", &part_number);

if (find_part(part_number) >= 0) {

printf("Part already exists.\n");

return;

}

inventory[num_parts].number = part_number;

printf("Enter part name: ");

read_line(inventory[num_parts].name, NAME_LEN);

printf("Enter quantity on hand: ");

scanf("%d", &inventory[num_parts].on_hand);

num_parts++;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
48

Chapter 16: Structures, Unions, and Enumerations

/**

* search: Prompts the user to enter a part number, then *

* looks up the part in the database. If the part *

* exists, prints the name and quantity on hand; *

* if not, prints an error message. *

**/

void search(void)

{

int i, number;

printf("Enter part number: ");

scanf("%d", &number);

i = find_part(number);

if (i >= 0) {

printf("Part name: %s\n", inventory[i].name);

printf("Quantity on hand: %d\n", inventory[i].on_hand);

} else

printf("Part not found.\n");

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
49

Chapter 16: Structures, Unions, and Enumerations

/**

* update: Prompts the user to enter a part number. *

* Prints an error message if the part doesn't *

* exist; otherwise, prompts the user to enter *

* change in quantity on hand and updates the *

* database. *

**/

void update(void)

{
int i, number, change;

printf("Enter part number: ");

scanf("%d", &number);

i = find_part(number);

if (i >= 0) {

printf("Enter change in quantity on hand: ");

scanf("%d", &change);

inventory[i].on_hand += change;

} else

printf("Part not found.\n");
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
50

Chapter 16: Structures, Unions, and Enumerations

/**

* print: Prints a listing of all parts in the database, *

* showing the part number, part name, and *

* quantity on hand. Parts are printed in the *

* order in which they were entered into the *

* database. *

**/

void print(void)

{

int i;

printf("Part Number Part Name "

"Quantity on Hand\n");

for (i = 0; i < num_parts; i++)

printf("%7d %-25s%11d\n", inventory[i].number,

inventory[i].name, inventory[i].on_hand);

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
51

Chapter 16: Structures, Unions, and Enumerations

readline.h

#ifndef READLINE_H

#define READLINE_H

/**

* read_line: Skips leading white-space characters, then *

* reads the remainder of the input line and *

* stores it in str. Truncates the line if its *

* length exceeds n. Returns the number of *

* characters stored. *

**/

int read_line(char str[], int n);

#endif

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
52

Chapter 16: Structures, Unions, and Enumerations

readline.c

#include <ctype.h>

#include <stdio.h>

#include "readline.h"

int read_line(char str[], int n)

{

int ch, i = 0;

while (isspace(ch = getchar()))

;

while (ch != '\n' && ch != EOF) {

if (i < n)

str[i++] = ch;

ch = getchar();

}

str[i] = '\0';

return i;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
53

Chapter 17: Advanced Uses of Pointers

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 17

Advanced Uses of Pointers

Chapter 17: Advanced Uses of Pointers

Dynamic Storage Allocation

• C’s data structures, including arrays, are normally

fixed in size.

• Fixed-size data structures can be a problem, since

we’re forced to choose their sizes when writing a

program.

• Fortunately, C supports dynamic storage

allocation: the ability to allocate storage during

program execution.

• Using dynamic storage allocation, we can design

data structures that grow (and shrink) as needed.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 17: Advanced Uses of Pointers

Dynamic Storage Allocation

• Dynamic storage allocation is used most often for

strings, arrays, and structures.

• Dynamically allocated structures can be linked

together to form lists, trees, and other data

structures.

• Dynamic storage allocation is done by calling a

memory allocation function.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 17: Advanced Uses of Pointers

Memory Allocation Functions

• The <stdlib.h> header declares three memory

allocation functions:

malloc—Allocates a block of memory but doesn’t

initialize it.

calloc—Allocates a block of memory and clears it.

realloc—Resizes a previously allocated block of

memory.

• These functions return a value of type void * (a

“generic” pointer).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 17: Advanced Uses of Pointers

Null Pointers

• If a memory allocation function can’t locate a

memory block of the requested size, it returns a

null pointer.

• After we’ve stored the function’s return value in a

pointer variable, we must test to see if it’s a null

pointer.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 17: Advanced Uses of Pointers

Null Pointers

• An example of testing malloc’s return value:

p = malloc(10000);

if (p == NULL) {

/* allocation failed; take appropriate action */

}

• NULL is a macro (defined in various library

headers) that represents the null pointer.

• Some programmers combine the call of malloc

with the NULL test:

if ((p = malloc(10000)) == NULL) {

/* allocation failed; take appropriate action */

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

Chapter 17: Advanced Uses of Pointers

Dynamically Allocated Strings

• Dynamic storage allocation is often useful for

working with strings.

• Strings are stored in character arrays, and it can be

hard to anticipate how long these arrays need to

be.

• By allocating strings dynamically, we can

postpone the decision until the program is running.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

• Prototype for the malloc function:

void *malloc(size_t size);

• malloc allocates a block of size bytes and

returns a pointer to it.

• size_t is an unsigned integer type defined in the

library.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

• A call of malloc that allocates memory for a

string of n characters:

p = malloc(n + 1);

p is a char * variable.

• Each character requires one byte of memory;
adding 1 to n leaves room for the null character.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

• Memory allocated using malloc isn’t cleared, so

p will point to an uninitialized array of n + 1

characters:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

• Calling strcpy is one way to initialize this array:

strcpy(p, "abc");

• The first four characters in the array will now be
a, b, c, and \0:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation

in String Functions

• Dynamic storage allocation makes it possible to

write functions that return a pointer to a “new”

string.

• Consider the problem of writing a function that

concatenates two strings without changing either

one.

• The function will measure the lengths of the two
strings to be concatenated, then call malloc to

allocate the right amount of space for the result.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation

in String Functions
char *concat(const char *s1, const char *s2)

{
char *result;

result = malloc(strlen(s1) + strlen(s2) + 1);

if (result == NULL) {

printf("Error: malloc failed in concat\n");

exit(EXIT_FAILURE);
}

strcpy(result, s1);

strcat(result, s2);

return result;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation

in String Functions
• A call of the concat function:

p = concat("abc", "def");

• After the call, p will point to the string

"abcdef", which is stored in a dynamically

allocated array.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation

in String Functions
• Functions such as concat that dynamically

allocate storage must be used with care.

• When the string that concat returns is no longer

needed, we’ll want to call the free function to

release the space that the string occupies.

• If we don’t, the program may eventually run out of

memory.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 17: Advanced Uses of Pointers

Dynamically Allocated Arrays

• Dynamically allocated arrays have the same

advantages as dynamically allocated strings.

• The close relationship between arrays and pointers

makes a dynamically allocated array as easy to use

as an ordinary array.

• Although malloc can allocate space for an array,

the calloc function is sometimes used instead,

since it initializes the memory that it allocates.

• The realloc function allows us to make an

array “grow” or “shrink” as needed.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Storage for an Array

• Suppose a program needs an array of n integers,

where n is computed during program execution.

• We’ll first declare a pointer variable:

int *a;

• Once the value of n is known, the program can

call malloc to allocate space for the array:

a = malloc(n * sizeof(int));

• Always use the sizeof operator to calculate the

amount of space required for each element.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Storage for an Array

• We can now ignore the fact that a is a pointer and

use it instead as an array name, thanks to the

relationship between arrays and pointers in C.

• For example, we could use the following loop to
initialize the array that a points to:

for (i = 0; i < n; i++)

a[i] = 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

Chapter 17: Advanced Uses of Pointers

The calloc Function

• The calloc function is an alternative to

malloc.

• Prototype for calloc:

void *calloc(size_t nmemb, size_t size);

• Properties of calloc:

– Allocates space for an array with nmemb elements,

each of which is size bytes long.

– Returns a null pointer if the requested space isn’t

available.

– Initializes allocated memory by setting all bits to 0.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 17: Advanced Uses of Pointers

The calloc Function

• A call of calloc that allocates space for an array

of n integers:

a = calloc(n, sizeof(int));

• By calling calloc with 1 as its first argument,

we can allocate space for a data item of any type:

struct point { int x, y; } *p;

p = calloc(1, sizeof(struct point));

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 17: Advanced Uses of Pointers

The realloc Function

• The realloc function can resize a dynamically

allocated array.

• Prototype for realloc:

void *realloc(void *ptr, size_t size);

• ptr must point to a memory block obtained by a

previous call of malloc, calloc, or realloc.

• size represents the new size of the block, which

may be larger or smaller than the original size.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 17: Advanced Uses of Pointers

The realloc Function

• Properties of realloc:

– When it expands a memory block, realloc doesn’t

initialize the bytes that are added to the block.

– If realloc can’t enlarge the memory block as

requested, it returns a null pointer; the data in the old

memory block is unchanged.

– If realloc is called with a null pointer as its first

argument, it behaves like malloc.

– If realloc is called with 0 as its second argument, it

frees the memory block.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 17: Advanced Uses of Pointers

The realloc Function

• We expect realloc to be reasonably efficient:

– When asked to reduce the size of a memory block,

realloc should shrink the block “in place.”

– realloc should always attempt to expand a memory

block without moving it.

• If it can’t enlarge a block, realloc will allocate a

new block elsewhere, then copy the contents of the

old block into the new one.

• Once realloc has returned, be sure to update all

pointers to the memory block in case it has been

moved.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 17: Advanced Uses of Pointers

Deallocating Storage

• malloc and the other memory allocation

functions obtain memory blocks from a storage

pool known as the heap.

• Calling these functions too often—or asking them

for large blocks of memory—can exhaust the

heap, causing the functions to return a null pointer.

• To make matters worse, a program may allocate

blocks of memory and then lose track of them,

thereby wasting space.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

Chapter 17: Advanced Uses of Pointers

Deallocating Storage

• Example:

p = malloc(…);

q = malloc(…);

p = q;

• A snapshot after the first two statements have been

executed:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 17: Advanced Uses of Pointers

Deallocating Storage

• After q is assigned to p, both variables now point

to the second memory block:

• There are no pointers to the first block, so we’ll

never be able to use it again.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 17: Advanced Uses of Pointers

Deallocating Storage

• A block of memory that’s no longer accessible to

a program is said to be garbage.

• A program that leaves garbage behind has a

memory leak.

• Some languages provide a garbage collector that

automatically locates and recycles garbage, but C

doesn’t.

• Instead, each C program is responsible for
recycling its own garbage by calling the free

function to release unneeded memory.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 17: Advanced Uses of Pointers

The free Function

• Prototype for free:

void free(void *ptr);

• free will be passed a pointer to an unneeded

memory block:

p = malloc(…);

q = malloc(…);

free(p);

p = q;

• Calling free releases the block of memory that p

points to.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 17: Advanced Uses of Pointers

The “Dangling Pointer” Problem

• Using free leads to a new problem: dangling

pointers.

• free(p) deallocates the memory block that p points

to, but doesn’t change p itself.

• If we forget that p no longer points to a valid memory

block, chaos may ensue:

char *p = malloc(4);
…
free(p);
…
strcpy(p, "abc"); /*** WRONG ***/

• Modifying the memory that p points to is a serious

error.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

	ch16
	ch17

