Chapter 16

Structures, Unions,
and Enumerations

C PROGRANMMING 1

A Modern Approach secowo eoirion

Structure Variables

» The properties of a structure are different from
those of an array.

— The elements of a structure (its members) aren’t
required to have the same type.

— The members of a structure have names; to select a

particular member, we specify its name, not its position.

 |In some languages, structures are called records,
and members are known as fields.

C PROGRANMMING 2

A Modern Approach secowo eoirion

Declaring Structure Variables

A structure is a logical choice for storing a
collection of related data items.

e A declaration of two structure variables that store
Information about parts in a warehouse:

struct {
int number;
char name[NAME LEN+1];
int on hand;

} partl, partZ;

C PROGRANMMING 3

A Modern Approach secowo eoirion

Declaring Structure Variables

The members of a structure are
stored in memory In the order In
which they’re declared.

Appearance of partl >

Assumptions:
— partl is located at address 2000.
— Integers occupy four bytes.
— NAME LEN has the value 25.

— There are no gaps between the
members.

C PROGRANMMING 4

A Modern Approach secowo eoirion

2000

2001

2002

2003

2004

2029

2030

2031

2032

2033

> number

>name

>on_ hand

Declaring Structure Variables

 Abstract representations of a structure:

number I

name number name on_ hand

on hand

« Member values will go in the boxes later.

C PROGRANMMING 5

A Modern Approach secowo eoirion

Declaring Structure Variables

» Each structure represents a new scope.

* Any names declared in that scope won’t conflict
with other names in a program.

 In C terminology, each structure has a separate
name space for its members.

C PROGRANMMING 6

A Modern Approach secowo eoirion

Declaring Structure Variables

« For example, the following declarations can
appear in the same program:

struct |
int number;
char name [NAME LEN+1];
int on hand;

} partl, part2;

struct {
char name [NAME LEN+1];
int number;
char sex;
} employeel, employee?Z;
C PROGRANMMING 7

A Modern Approach secowo eoirion

Initializing Structure Variables

A structure declaration may include an initializer:

struct {
int number;
char name [NAME LEN+1];
int on hand;
} partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

« Appearance of part1 after initialization:

number 528

name |Disk drive

on hand 10

C PROGRANMMING g

A Modern Approach secowo eoirion

Initializing Structure Variables

Structure initializers follow rules similar to those
for array initializers.

Expressions used in a structure initializer must be
constant. (This restriction is relaxed in C99.)

An initializer can have fewer members than the
structure 1t’s 1nitializing.

Any “leftover” members are given 0 as their 1nitial
value.

C PROGRANMMING o

A Modern Approach secowo eoirion

Designated Initializers (C99)

C99’s designated initializers can be used with
structures.

The initializer for part1 shown in the previous
example:
{528, "Disk drive", 10}

In a designated initializer, each value would be labeled
by the name of the member that it initializes:

{ .number = 528, .name = "Disk drive", .on hand = 10}

The combination of the period and the member name
Is called a designator.

C PROGRANMMING 10

A Modern Approach secowo eoirion

Designated Initializers (C99)

 Designated initializers are easier to read and check

for correctness.

* Also, values in a designated initializer don’t have
to be placed in the same order that the members

are listed in the structure.

C PROGRANMMING 1

A Modern Approach secowo eoirion

Designated Initializers (C99)

* Not all values listed in a designated initializer
need be prefixed by a designator.

« Example:
{ .number = 528, "Disk drive", .on hand = 10}

The compiler assumes that "Disk drive"
Initializes the member that follows numbexr In the

structure.

« Any members that the initializer fails to account
for are set to zero.

C PROGRANMMING 12

A Modern Approach secowo eoirion

Operations on Structures

"0 access a member within a structure, we write
the name of the structure first, then a period, then
the name of the member.

Statements that display the values of part1’s
members:

printf ("Part number: %d\n", partl.number);

printf ("Part name: %$s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on hand);

C PROGRANMMING 13

A Modern Approach secowo eoirion

Operations on Structures

The members of a structure are lvalues.

They can appear on the left side of an assignment
or as the operand in an increment or decrement
expression:.

partl.number = 258;

/* changes partl's part number */
partl.on hand++;

/* increments partl's quantity on hand */

C PROGRANMMING 14

A Modern Approach secowo eoirion

Operations on Structures

The period used to access a structure member is
actually a C operator.

It takes precedence over nearly all other operators.
Example:

scanf ("%d", &partl.on hand);
The . operator takes precedence over the &

operator, so & computes the address of
partl.on hand.

C PROGRANMMING 15

A Modern Approach secowo eoirion

Operations on Structures

« The other major structure operation Is assignment:
part2 = partl;
» The effect of this statement Is to copy

partl.number IN0 part2.number,
partl.name INt0O part?2.name, and So on.

C PROGRANMMING 16

A Modern Approach secowo eoirion

Operations on Structures

» Arrays can’t be copied using the = operator, but an

array embedded within a structure Is copied when
the enclosing structure is copied.

« Some programmers exploit this property by
creating “dummy” structures to enclose arrays that
will be copied later:

struct { int a[l1l0],; } al, aZ2;
al = az2;
/* legal, since al and a2 are structures */

C PROGRANMMING 17

A Modern Approach secowo eoirion

Operations on Structures

The = operator can be used only with structures of
compatible types.

Two structures declared at the same time (as
partl and part?2 were) are compatible.

Structures declared using the same “structure tag”
or the same type name are also compatible.

Other than assignment, C provides no operations
on entire structures.

In particular, the == and ! = operators can’t be
used with structures.

C PROGRANMMING 18

A Modern Approach secowo eoirion

Structure Types

« Suppose that a program needs to declare several
structure variables with identical members.

* \We need a name that represents a type of structure,
not a particular structure variable.

« \Ways to name a structure:

— Declare a “structure tag”
— Use typedef to define a type name

C PROGRANMMING 19

A Modern Approach secowo eoirion

Declaring a Structure Tag

A structure tag Is a name used to identify a
particular kind of structure.

» The declaration of a structure tag named part:

struct part {
int number;

char name[NAME LEN+1];
int on hand;

¥
 Note that a semicolon must follow the right brace.

C PROGRANMMING 20

A Modern Approach secowo eoirion

Declaring a Structure Tag

The part tag can be used to declare variables:
struct part partl, partZ;

We can’t drop the word struct:

part partl, part2; /*** WRONG ***/
part isn’t a type name; without the word
struct, It Is meaningless.

Since structure tags aren’t recognized unless
preceded by the word struct, they don’t conflict

with other names used in a program.

C PROGRANMMING 21

A Modern Approach secowo eoirion

Declaring a Structure Tag

 All structures declared to have type struct
part are compatible with one another:

struct part partl = {528, "Disk drive", 10};
struct part partZ;

partZ2 = partl;
/* legal; both parts have the same type */

C PROGRANMMING 2

A Modern Approach secowo eoirion

Defining a Structure Type

 As an alternative to declaring a structure tag, we
can use typedef to define a genuine type name.

A definition of a type named Part:

typedef struct {
int number;
char name[NAME LEN+1];
int on hand;

} Part;

« Part can be used in the same way as the built-in

types:
Part partl, part2;
C PROGRANMMING 23

A Modern Approach secowo eoirion

Structures as Arguments and Return Values

 Functions may have structures as arguments and
return values.

A function with a structure argument:

volid print part (struct part p)
{

printf ("Part number: %d\n", p.number);
printf ("Part name: %s\n", p.name);
printf ("Quantity on hand: %d\n", p.on hand);

}

« Acallof print part:
print part (partl);

C PROGRANMMING 24

A Modern Approach secowo eoirion

Structures as Arguments and Return Values

A function that returns a part structure:

struct part builild part(int number,
const char *name,

int on hand)

struct part p;

p.number = number;
strcpy (p.name, name);
p.on hand = on hand;
return p;

}
« Acallof build part:
partl = build part (528, "Disk drive", 10);

C PROGRANMMING 25

A Modern Approach secowo eoirion

Nested Arrays and Structures

o Structures and arrays can be combined without
restriction.

 Arrays may have structures as their elements, and
structures may contain arrays and structures as
members.

C PROGRANMMING 26

A Modern Approach secowo eoirion

Nested Structures

 Nesting one structure inside another is often
useful.

» Suppose that person name Is the following
structure:

struct person name {
char first[FIRST NAME LEN+1];
char middle initial;
char last[LAST NAME LEN+1];

};

C PROGRANMMING 27

A Modern Approach secowo eoirion

Nested Structures

« We can use person name as part of a larger
structure:

struct student {

struct person name name;
int i1d, age;
char sex;

} studentl, student?’;

» Accessing student1’s first name, middle initial,

or last name requires two applications of the .
operator:

strcpy (studentl.name.first, "Fred");

C PROGRANMMING 28

A Modern Approach secowo eoirion

Nested Structures

« Having name be a structure makes it easier to treat
names as units of data.

A function that displays a name could be passed one
person name argument instead of three arguments:

display name (studentl.name) ;

C PROGRANMMING 29

A Modern Approach secowo eoirion

Arrays of Structures

* One of the most common combinations of arrays

and structures Is an array whose elements are
structures.

 This kind of array can serve as a simple database.

* An array of part structures capable of storing
Information about 100 parts:

struct part inventory[100];

C PROGRANMMING 30

A Modern Approach secowo eoirion

Arrays of Structures

» Accessing a part Inthe array is done by using
subscripting:
print part (inventoryl[i]);

 Accessing a member within a part structure

requires a combination of subscripting and member
selection:

inventory|[1i] .number = 883;

« Accessing a single character in a part name
requires subscripting, followed by member
selection, followed by subscripting:
inventory[i] .name[0] = '\O0';

C PROGRANMMING 31

A Modern Approach secowo eoirion

Initializing an Array of Structures

» |nitializing an array of structures is done in much

the same way as initializing a multidimensional
array.

e Each structure has its own brace-enclosed

Initializer; the array initializer wraps another set of
braces around the structure initializers.

C PROGRANMMING 32

A Modern Approach secowo eoirion

Initializing an Array of Structures

One reason for initializing an array of structures is
that 1t contains information that won’t change
during program execution.

Example: an array that contains country codes
used when making international telephone calls.

The elements of the array will be structures that
store the name of a country along with its code:

struct dialing code {
char *country;
int code;

I

C PROGRANMMING 33

A Modern Approach secowo eoirion

Initializing an Array of Structures

const struct dialing code country codes[] =

{{"Argentina", 54}, {"Bangladesh", 8801},
{"Brazil", 55}, {"Burma (Myanmar)", 95},
{"China", 80}, {"Colombia", 571,
{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 911},
{"Indonesia", 62}, {"Iran", 981,
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 2341,
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", T},
{"South Africa", 27}, {"South Korea", 821,
{"Spain", 34}, {"Sudan", 2491,
{"Thailand", 66}, {"Turkey", 901},
{"Ukraine", 380}, {"United Kingdom", 441,
{"United States", 1}, {"Vietnam", 841%11};

« The inner braces around each structure value are optional.
C PROGRAMMING 34

A Modern A}();OT'OC&CL{ SECOND EDITION

Program: Maintaining a Parts Database

The inventory. c program illustrates how
nested arrays and structures are used in practice.

The program tracks parts stored in a warehouse.

Information about the parts is stored in an array of
structures.

Contents of each structure:
— Part number

— Name
— Quantity

C PROGRANMMING 35

A Modern Approach secowo eoirion

Program: Maintaining a Parts Database

» QOperations supported by the program:

— Add a new part number, part name, and initial quantity
on hand

— Given a part number, print the name of the part and the
current quantity on hand

— Given a part number, change the quantity on hand
— Print a table showing all information in the database
— Terminate program execution

C PROGRANMMING 36

A Modern Approach secowo eoirion

Program: Maintaining a Parts Database

» The codes i (insert), s (search), u (update), p (print),
and g (quit) will be used to represent these operations.

A session with the program:

Enter operation code: 1
Enter part number: 528
Enter part name: Disk drive

Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

C PROGRANMMING 37

A Modern Approach sccowno toimion

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 914
Part not found.

Enter operation code: 1
Enter part number: 914
Enter part name: Printer cable

Enter quantity on hand: 5

Enter operation code: u

Enter part number: 528

Enter change in quantity on hand: -2

C PROGRANMMING 38

A Modern App?'()@()/’l SECOND EDITION

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p

Part Number Part Namg Quantity on Hand
528 Disk drive 8
914 Printer cable 5

Enter operation code: g

c PROGRANMMING 39 Copyright © 2008 W. W. Norton & Company.

A Modern AppTO@C/’L SECOND EDITION All rights reserved.

Program: Maintaining a Parts Database

» The program will store information about each
part in a structure.

 The structures will be stored in an array named
inventory.

A variable named num parts will keep track of
the number of parts currently stored in the array.

C PROGRANMMING 40

A Modern Approach secowo eoirion

Program: Maintaining a Parts Database

* An outline of the program’s main loop:

for (;;) |

prompt user to enter operation code;

read code;

switch (code)
case ']
case '
case 'u
case 'p
case 'Qqg

default
}

l'
s':
1
1
1

}
C PROGRANMMING

A Modern Approach secowo eoirion

{
perform insert operation; break;

perform search operation; break;
perform update operation; break;
perform print operation; break;
terminate program;

print error message;

41

Program: Maintaining a Parts Database

 Separate functions will perform the insert, search,
update, and print operations.

« Since the functions will all need access to
inventory and num parts, these variables will
be external.

« The program is split into three files:
— inventory. c (the bulk of the program)

— readline.h (contains the prototype for the
read line function)

- readline. c (contains the definition of read line)

C PROGRANMMING 42

A Modern Approach secowo eoirion

inventory.c

/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME LEN 25
#define MAX PARTS 100

struct part {
int number;
char name [NAME LEN+1];
int on hand;

} inventory[MAX PARTS];

int num parts = 0; /* number of parts currently stored */

int find part (int number);
vold insert (void);
vold search (void) ;
vold update (void);
void print (void) ;

C PROGRANMMING 43

A Modern A}()I}T‘OC&C;& SECOND EDITION

/**

* main: Prompts the user to enter an operation code, *
x then calls a function to perform the requested x
* action. Repeats until the user enters the *
* command 'g'. Prints an error message 1f the user *
x enters an 1llegal code. x
**/

int main(void)

{

char code;

for (;7) |

printf ("Enter operation code: ");

scanf (" %c", &code);

while (getchar() != '\n') /* skips to end of line */
C PROGRAMMING 44

A Modern A}();OT'OC&C;& SECOND EDITION

switch (code) {

case 'i': 1insert ()
break;
case 's': search{();
break;
case 'u': update();
break;
case 'p': print();
break;
case 'gq': return 0;

default: printf("Illegal code\n");

}
printf ("\n") ;

C PROGRANMMING 45

A Modern A}();OT'OC&CL{ SECOND EDITION

/**

* find part: Looks up a part number in the inventory x
x array. Returns the array index i1f the part *
* number is found; otherwise, returns -1. *

*****k*****~k****~k******k***********k*************************/

int find part (int number)

{

int 1i;

for (1 = 0; 1 < num parts; 1++)
1f (inventory[i] .number == number)
return 1i;
return -1;

C PROGRANMMING 46

A Modern A}();OT'OC&CL{ SECOND EDITION

/**

* 1nsert: Prompts the user for information about a new
x part and then inserts the part into the

x database. Prints an error message and returns
* prematurely if the part already exists or the
* database 1s full.

*

*
*
*
*
*
Rt i i b b b b b b b b b b G b i A i i i i i i i i i i i i i i i i G i G b i i i i i i i i i i i i i i i i i g ¢

/
volid insert (void)

{

int part number;

if (num parts == MAX PARTS) {
printf ("Database is full; can't add more parts.\n");
return;

}

C PROGRANMMING 47

A Modern A}();OT'OC&C;& SECOND EDITION

printf ("Enter part number: ");

scanf ("5d", &part number);

if (find part (part number) >= 0) {
printf ("Part already exists.\n");

return;
}
inventory[num parts].number = part number;
printf ("Enter part name: ");
read line(inventory[num parts].name, NAME LEN) ;
printf ("Enter quantity on hand: ");

scanf ("%d", &inventory[num parts].on hand);
num parts++;

C PROGRANMMING 48

A Modern A}();OT'OC&C;& SECOND EDITION

/**

* search: Prompts the user to enter a part number, then *

x looks up the part in the database. If the part *
* exists, prints the name and quantity on hand; *
* if not, prints an error message. *

**/

void search (void)

{

int 1, number;

printf ("Enter part number: ");
scanf ("%sd", &number) ;
1 = find part (number) ;
if (1 >= 0) {
printf ("Part name: %$s\n", inventoryl[i].name);
printf ("Quantity on hand: %d\n", inventory[i].on hand);
} else
printf ("Part not found.\n");

C PROGRANMMING 49

A Modern A}();OT'OC&C;& SECOND EDITION

/**

*

*
*
*
*
*

update: Prompts the user to enter a part number. x
Prints an error message 1f the part doesn't x

exist; otherwise, prompts the user to enter *

change in quantity on hand and updates the *

*

*

database.
P b i b i b b b b b b b b b b i b b b b i i i i b i i i b i i i ¢

/

void update (void)

{

int 1, number, change;

printf ("Enter part number: ");
scanft ("sd", &number);
i = find part (number) ;
if (1 >= 0) |
printf ("Enter change in quantity on hand: ");

scanf ("%$d", &change);

inventory[i].on hand += change;
} else

printf ("Part not found.\n");

C PROGRANMMING 50

A Modern A}();OT'OC&C;& SECOND EDITION

/**

* print: Prints a listing of all parts in the database,

x showing the part number, part name, and x
* quantity on hand. Parts are printed in the *
x order 1in which they were entered into the *
x database. x
**/

void print (void)

{

int 1i;

printf ("Part Number Part Name "
"Quantity on Hand\n");

for (1 = 0; 1 < num parts; 1i++)
printf ("$7d $-25s%11d\n", inventory[i].number,

inventory[i] .name, inventoryl[i].on hand);

C PROGRANMMING 51

A Modern A}();OT'OC&C;& SECOND EDITION

readline.h

#ifndef READLINE H
#define READLINE H

/**

* read line: Skips leading white-space characters, then *
x reads the remainder of the input line and *
* stores 1t in str. Truncates the line 1f its *
x length exceeds n. Returns the number of x
* characters stored. *
**/
int read line(char str[], int n);
#endif
C PROGRANMMING 52

A Modern A}()I}T‘OC&C;& SECOND EDITION

#include
#include
#include

int read

{

int ch

while
while
if (
st

ch
}

str[i]

<ctype.h>
<stdio.h>
"readline

line (char

, 1 = 0;

(1sspace(ch

(ch !
1 < n
r{i++

V\O';

l\nl

readline.c

.h"

str[], int n)

getchar()))

&& ch !'= EOF) {

)
] ch;
getchar () ;

return 1i;

C PROGRANMMING

A Modern A}();OT'OC&C;& SECOND EDITION

53

Chapter 17

Advanced Uses of Pointers

C PROGRANMMING 1

A Modern Approach secowo eoirion

Dynamic Storage Allocation

C’s data structures, including arrays, are normally
fixed In size.

Fixed-size data structures can be a problem, since
we’re forced to choose their sizes when writing a
program.

Fortunately, C supports dynamic storage
allocation: the ability to allocate storage during
program execution.

Using dynamic storage allocation, we can design
data structures that grow (and shrink) as needed.

C PROGRANMMING 2

A Modern Approach secowo eoirion

Dynamic Storage Allocation

« Dynamic storage allocation is used most often for
strings, arrays, and structures.

« Dynamically allocated structures can be linked
together to form lists, trees, and other data
structures.

« Dynamic storage allocation is done by calling a
memory allocation function.

C PROGRANMMING 3

A Modern Approach secowo eoirion

Memory Allocation Functions

 The <stdlib.h> header declares three memory
allocation functions:
malloc—Allocates a block of memory but doesn’t
Initialize it.
calloc—Allocates a block of memory and clears it.

realloc—Resizes a previously allocated block of
memory.

 These functions return a value of type void * (a
“generic” pointer).

C PROGRANMMING 4

A Modern Approach secowo eoirion

Null Pointers

If a memory allocation function can’t locate a
memory block of the requested size, it returns a
null pointer.

After we’ve stored the function’s return value 1n a
pointer variable, we must test to see 1f it’s a null
pointer.

C PROGRANMMING 5

A Modern Approach secowo eoirion

Null Pointers

« An example of testing malloc’s return value:

p = malloc (10000);
if (p == NULL) {
/* allocation failed; take appropriate action */

}

« NULL Is a macro (defined in various library
headers) that represents the null pointer.

« Some programmers combine the call of malloc
with the NULL test:

if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}
C PROGRANMMING 6

A Modern Approach secowo eoirion

Dynamically Allocated Strings

« Dynamic storage allocation is often useful for
working with strings.

o Strings are stored in character arrays, and it can be
hard to anticipate how long these arrays need to
be.

« By allocating strings dynamically, we can
postpone the decision until the program is running.

C PROGRANMMING 7

A Modern Approach secowo eoirion

Using malloc to Allocate Memory for a String

 Prototype for the malloc function:
vold *malloc(size t size);

« malloc allocates a block of size bytes and
returns a pointer to It.

« size tisanunsigned integer type defined in the
library.

C PROGRANMMING g

A Modern Approach secowo eoirion

Using malloc to Allocate Memory for a String

* A call of malloc that allocates memory for a
string of n characters:

p = malloc(n + 1);
p ISa char * variable.

 Each character requires one byte of memory;
adding 1 to n leaves room for the null character.

C PROGRANMMING o

A Modern Approach secowo eoirion

Using malloc to Allocate Memory for a String

« Memory allocated using malloc isn’t cleared, so
p Will point to an uninitialized array of n + 1
characters:

C PROGRANMMING 10

A Modern Approach secowo eoirion

Using malloc to Allocate Memory for a String

» Calling strcpy Is one way to Initialize this array:
strcpy (p, "abc");

 The first four characters in the array will now be
a, b, c,and \0:

C PROGRANMMING 1

A Modern Approach secowo eoirion

Using Dynamic Storage Allocation
In String Functions

Dynamic storage allocation makes it possible to
write functions that return a pointer to a “new”
string.
Consider the problem of writing a function that
concatenates two strings without changing either
one.
The function will measure the lengths of the two
strings to be concatenated, then call malloc to
allocate the right amount of space for the result.

C PROGRANMMING 12

A Modern Approach secowo eoirion

Using Dynamic Storage Allocation
In String Functions

char *concat (const char *sl, const char *s2)

{

char *result;

result = malloc(strlen(sl) + strlen(s2) + 1);

1if (result == NULL) {
printf ("Error: malloc failed in concat\n");
ex1t (EXIT FAILURE) ;

}
strcpy (result, sl);

strcat (result, s2);
return result;

@ Pnoanmmmc 13

A Modern Approach secowo eoimion

Using Dynamic Storage Allocation
In String Functions
« A call of the concat function:
p = concat ("abc", "def");

« After the call, p will point to the string
"abcdef", which Is stored in a dynamically
allocated array.

C PROGRANMMING 14

A Modern Approach secowo eoirion

Using Dynamic Storage Allocation
In String Functions
 Functions such as concat that dynamically
allocate storage must be used with care.

» When the string that concat returns is no longer
needed, we’ll want to call the £ ree function to

release the space that the string occupies.

« If we don’t, the program may eventually run out of
memory.

C PROGRANMMING 15

A Modern Approach secowo eoirion

Dynamically Allocated Arrays

Dynamically allocated arrays have the same
advantages as dynamically allocated strings.

The close relationship between arrays and pointers
makes a dynamically allocated array as easy to use
as an ordinary array.

Although malloc can allocate space for an array,
the calloc function is sometimes used instead,
since It initializes the memory that it allocates.
The realloc function allows us to make an
array “grow’”’ or “shrink™ as needed.

C PROGRANMMING 16

A Modern Approach secowo eoirion

Using malloc to Allocate Storage for an Array

 Suppose a program needs an array of n integers,
where n IS computed during program execution.

« We’ll first declare a pointer variable:
int *a;

* Once the value of n Is known, the program can
call malloc to allocate space for the array:

a = malloc(n * sizeof (int)):;
« Always use the sizeof operator to calculate the
amount of space required for each element.

C PROGRANMMING 17

A Modern Approach secowo eoirion

Using malloc to Allocate Storage for an Array

« \We can now ignore the fact that a Is a pointer and

use it instead as an array name, thanks to the
relationship between arrays and pointers in C.

» For example, we could use the following loop to
Initialize the array that a points to:
for (i = 0; 1 < n; 1i++)
ali] = 0;

C PROGRANMMING 18

A Modern Approach secowo eoirion

The calloc Function

The calloc function is an alternative to
malloc.

Prototype for calloc:

vold *calloc(size t nmemb, size t size);
Properties of calloc:

— Allocates space for an array with nmemb elements,
each of which is size bytes long.

— Returns a null pointer if the requested space 1sn’t
available.

— Initializes allocated memory by setting all bits to O.

C PROGRANMMING 19

A Modern Approach secowo eoirion

The calloc Function

« Acall of calloc that allocates space for an array
of n Integers:

a = calloc(n, sizeof (int));

« By calling calloc with 1 as its first argument,

we can allocate space for a data item of any type:
struct point { 1nt x, vy; } *p;

p = calloc(l, sizeof (struct point));

C PROGRANMMING 20

A Modern Approach secowo eoirion

The realloc Function

* The realloc function can resize a dynamically
allocated array.

 Prototype for realloc:
volid *realloc(void *ptr, size t size);

« ptr must point to a memory block obtained by a
previous call of malloc, calloc, 0r realloc.

« size represents the new size of the block, which
may be larger or smaller than the original size.

C PROGRANMMING 21

A Modern Approach secowo eoirion

The realloc Function

* Properties of realloc:

— When it expands a memory block, realloc doesn’t
Initialize the bytes that are added to the block.

— If realloc can’t enlarge the memory block as

requested, it returns a null pointer; the data in the old
memory block iIs unchanged.

— If realloc is called with a null pointer as its first
argument, it behaves like malloc.

— If realloc is called with 0 as its second argument, it
frees the memory block.

C PROGRANMMING 2

A Modern Approach secowo eoirion

The realloc Function

« We expect realloc to be reasonably efficient:

— When asked to reduce the size of a memory block,
realloc should shrink the block “in place.”

— realloc should always attempt to expand a memory
block without moving it.

» Ifitcan’t enlarge a block, realloc will allocate a

new block elsewhere, then copy the contents of the
old block into the new one.

 Once realloc has returned, be sure to update all

pointers to the memory block in case it has been
moved.

C PROGRANMMING 23

A Modern Approach secowo eoirion

Deallocating Storage

« malloc and the other memory allocation

functions obtain memory blocks from a storage
pool known as the heap.

» Calling these functions too often—or asking them
for large blocks of memory—can exhaust the
heap, causing the functions to return a null pointer.

« To make matters worse, a program may allocate
blocks of memory and then lose track of them,
thereby wasting space.

C PROGRANMMING 24

A Modern Approach secono evirion

Deallocating Storage

« Example:

p = malloc(..);
g = malloc(..);

p = q;
A snapshot after the first two statements have been

executed:
_ |
_ |

IS
IS

C PROGRANMMING 25

A Modern Approach secowo eoirion

Deallocating Storage

« After g Is assigned to p, both variables now point
to the second memory block:

i
5

d

* There are no pointers to the first block, so we’ll
never be able to use it again.

C PROGRANMMING 26

A Modern Approach secowo eoirion

Deallocating Storage

A block of memory that’s no longer accessible to
a program Is said to be garbage.

A program that leaves garbage behind has a
memory leak.

Some languages provide a garbage collector that
automatically locates and recycles garbage, but C
doesn’t.

Instead, each C program is responsible for
recycling its own garbage by calling the free

function to release unneeded memory.

C PROGRANMMING 27

A Modern Approach secono evirion

The £ree Function

Prototype for free:

volid free(void *ptr);

free Will be passed a pointer to an unneeded
memory block:

p = malloc(..);
g = malloc(..);
free(p);

p = d;

Calling f£ree releases the block of memory that p
points to.

C PROGRANMMING 28

A Modern Approach secowo eoirion

The "Dangling Pointer” Problem

« Using free leads to a new problem: dangling
pointers.

« free (p) deallocates the memory block that p points
to, but doesn’t change p itself.

 |f we forget that p no longer points to a valid memory
block, chaos may ensue:

char *p = malloc(4);
free(p);

strcpy (p, "abc"); /*** WRONG ***/

» Modifying the memory that p points to is a serious

error.
C PROGRANMMING 29

A Modern Approach secowo eoirion

	ch16
	ch17

