
2016-07-15

1

Chapter 20: Low-Level Programming

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 20

Low-Level Programming

Chapter 20: Low-Level Programming

Introduction

• Previous chapters have described C’s high-level,

machine-independent features.

• However, some kinds of programs need to

perform operations at the bit level:

– Systems programs (including compilers and operating

systems)

– Encryption programs

– Graphics programs

– Programs for which fast execution and/or efficient use

of space is critical

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

Chapter 20: Low-Level Programming

Bitwise Operators

• C provides six bitwise operators, which operate on

integer data at the bit level.

• Two of these operators perform shift operations.

• The other four perform bitwise complement,

bitwise and, bitwise exclusive or, and bitwise

inclusive or operations.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 20: Low-Level Programming

Bitwise Shift Operators

• The bitwise shift operators shift the bits in an

integer to the left or right:

<< left shift

>> right shift

• The operands for << and >> may be of any integer

type (including char).

• The integer promotions are performed on both

operands; the result has the type of the left

operand after promotion.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

Chapter 20: Low-Level Programming

Bitwise Shift Operators

• The value of i << j is the result when the bits in

i are shifted left by j places.

– For each bit that is “shifted off” the left end of i, a zero

bit enters at the right.

• The value of i >> j is the result when i is shifted

right by j places.

– If i is of an unsigned type or if the value of i is

nonnegative, zeros are added at the left as needed.

– If i is negative, the result is implementation-defined.

e.g. some implementations add zeros at the left end

while others preserve the sign bit by adding ones.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 20: Low-Level Programming

Bitwise Shift Operators

• Examples illustrating the effect of applying the

shift operators to the number 13:

unsigned short i, j;

i = 13;
/* i is now 13 (binary 0000000000001101) */

j = i << 2;

/* j is now 52 (binary 0000000000110100) */

j = i >> 2;

/* j is now 3 (binary 0000000000000011) */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

2016-07-15

2

Chapter 20: Low-Level Programming

Bitwise Shift Operators

• To modify a variable by shifting its bits, use the

compound assignment operators <<= and >>=:

i = 13;

/* i is now 13 (binary 0000000000001101) */

i <<= 2;

/* i is now 52 (binary 0000000000110100) */

i >>= 2;

/* i is now 13 (binary 0000000000001101) */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 20: Low-Level Programming

Bitwise Shift Operators

• The bitwise shift operators have lower precedence

than the arithmetic operators, which can cause

surprises:

i << 2 + 1 means i << (2 + 1), not (i << 2) + 1

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

Chapter 20: Low-Level Programming

Bitwise Complement, And,

Exclusive Or, and Inclusive Or

• There are four additional bitwise operators:

~ bitwise complement

& bitwise and

^ bitwise exclusive or

| bitwise inclusive or

• The ~ operator is unary; the integer promotions

are performed on its operand.

• The other operators are binary; the usual

arithmetic conversions are performed on their

operands.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 20: Low-Level Programming

Bitwise Complement, And,

Exclusive Or, and Inclusive Or
• The ~, &, ^, and | operators perform Boolean

operations on all bits in their operands.

• The ^ operator produces 0 whenever both

operands have a 1 bit, whereas | produces 1.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

Chapter 20: Low-Level Programming

Bitwise Complement, And,

Exclusive Or, and Inclusive Or
• Examples of the ~, &, ^, and | operators:

unsigned short i, j, k;

i = 21;

/* i is now 21 (binary 0000000000010101) */

j = 56;

/* j is now 56 (binary 0000000000111000) */

k = ~i;

/* k is now 65514 (binary 1111111111101010) */

k = i & j;

/* k is now 16 (binary 0000000000010000) */

k = i ^ j;

/* k is now 45 (binary 0000000000101101) */

k = i | j;

/* k is now 61 (binary 0000000000111101) */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 20: Low-Level Programming

Bitwise Complement, And,

Exclusive Or, and Inclusive Or
• The ~ operator can be used to help make low-level

programs more portable.

– An integer whose bits are all 1: ~0

– An integer whose bits are all 1 except for the last five:
~0x1f

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

2016-07-15

3

Chapter 20: Low-Level Programming

Bitwise Complement, And,

Exclusive Or, and Inclusive Or
• Each of the ~, &, ^, and | operators has a different

precedence:

Highest: ~

&

^

Lowest: |

• Examples:

i & ~j | k means (i & (~j)) | k

i ^ j & ~k means i ^ (j & (~k))

• Using parentheses helps avoid confusion.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 20: Low-Level Programming

Bitwise Complement, And,

Exclusive Or, and Inclusive Or
• The compound assignment operators &=, ^=, and

|= correspond to the bitwise operators &, ^, and |:

i = 21;

/* i is now 21 (binary 0000000000010101) */

j = 56;

/* j is now 56 (binary 0000000000111000) */

i &= j;

/* i is now 16 (binary 0000000000010000) */

i ^= j;

/* i is now 40 (binary 0000000000101000) */

i |= j;

/* i is now 56 (binary 0000000000111000) */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• The bitwise operators can be used to extract or

modify data stored in a small number of bits.

• Common single-bit operations:

– Setting a bit

– Clearing a bit

– Testing a bit

• Assumptions:

– i is a 16-bit unsigned short variable.

– The leftmost—or most significant—bit is numbered 15

and the least significant is numbered 0.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• Setting a bit. The easiest way to set bit 4 of i is to

or the value of i with the constant 0x0010:

i = 0x0000;

/* i is now 0000000000000000 */

i |= 0x0010;

/* i is now 0000000000010000 */

• If the position of the bit is stored in the variable j,

a shift operator can be used to create the mask:

i |= 1 << j; /* sets bit j */

• Example: If j has the value 3, then 1 << j is

0x0008.
Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• Clearing a bit. Clearing bit 4 of i requires a mask

with a 0 bit in position 4 and 1 bits everywhere

else:

i = 0x00ff;

/* i is now 0000000011111111 */

i &= ~0x0010;

/* i is now 0000000011101111 */

• A statement that clears a bit whose position is

stored in a variable:

i &= ~(1 << j); /* clears bit j */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• Testing a bit. An if statement that tests whether

bit 4 of i is set:

if (i & 0x0010) … /* tests bit 4 */

• A statement that tests whether bit j is set:

if (i & 1 << j) … /* tests bit j */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

2016-07-15

4

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• Working with bits is easier if they are given

names.

• Suppose that bits 0, 1, and 2 of a number

correspond to the colors blue, green, and red,

respectively.

• Names that represent the three bit positions:

#define BLUE 1

#define GREEN 2

#define RED 4

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• Examples of setting, clearing, and testing the BLUE

bit:

i |= 1 << BLUE; /* sets BLUE bit */

i &= ~(1 << BLUE); /* clears BLUE bit */

if (i & 1 << BLUE) …/* tests BLUE bit */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits

• It’s also easy to set, clear, or test several bits at

time:

i |= (1 << BLUE) | (1 << GREEN);

/* sets BLUE and GREEN bits */

i &= ~(1 << BLUE | 1 << GREEN);

/* clears BLUE and GREEN bits */

if (i & (1 << BLUE | 1 << GREEN)) …

/* tests BLUE and GREEN bits */

• The if statement tests whether either the BLUE

bit or the GREEN bit is set.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

• Dealing with a group of several consecutive bits (a

bit-field) is slightly more complicated than

working with single bits.

• Common bit-field operations:

– Modifying a bit-field

– Retrieving a bit-field

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

• Modifying a bit-field. Modifying a bit-field

requires two operations:

– A bitwise and (to clear the bit-field)

– A bitwise or (to store new bits in the bit-field)

• Example:

i = i & ~0x0070 | 0x0050;

/* stores 101 in bits 4-6 */

• The & operator clears bits 4–6 of i; the | operator

then sets bits 6 and 4.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

• To generalize the example, assume that j contains

the value to be stored in bits 4–6 of i.

• j will need to be shifted into position before the

bitwise or is performed:

i = (i & ~0x0070) | (j << 4);

/* stores j in bits 4-6 */

• The | operator has lower precedence than & and

<<, so the parentheses can be dropped:

i = i & ~0x0070 | j << 4;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
24

2016-07-15

5

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

• Retrieving a bit-field. Fetching a bit-field at the

right end of a number (in the least significant bits)

is easy:

j = i & 0x0007;

/* retrieves bits 0-2 */

• If the bit-field isn’t at the right end of i, we can

first shift the bit-field to the end before extracting
the field using the & operator:

j = (i >> 4) & 0x0007;

/* retrieves bits 4-6 */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
25

Chapter 20: Low-Level Programming

Program: XOR Encryption

• One of the simplest ways to encrypt data is to

exclusive-or (XOR) each character with a secret

key.

• Suppose that the key is the & character.

• XORing this key with the character z yields the \

character:

00100110 (ASCII code for &)

XOR 01111010 (ASCII code for z)

01011100 (ASCII code for \)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
26

Chapter 20: Low-Level Programming

Program: XOR Encryption

• Decrypting a message is done by applying the

same algorithm:

00100110 (ASCII code for &)

XOR 01011100 (ASCII code for \)

01111010 (ASCII code for z)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
27

Chapter 20: Low-Level Programming

Program: XOR Encryption

• The xor.c program encrypts a message by

XORing each character with the & character.

• The original message can be entered by the user or

read from a file using input redirection.

• The encrypted message can be viewed on the

screen or saved in a file using output redirection.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 20: Low-Level Programming

Program: XOR Encryption

• A sample file named msg:

Trust not him with your secrets, who, when left

alone in your room, turns over your papers.

--Johann Kaspar Lavater (1741-1801)

• A command that encrypts msg, saving the

encrypted message in newmsg:

xor <msg >newmsg

• Contents of newmsg:

rTSUR HIR NOK QORN _IST UCETCRU, QNI, QNCH JC@R

GJIHC OH _IST TIIK, RSTHU IPCT _IST VGVCTU.

--lINGHH mGUVGT jGPGRCT (1741-1801)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
29

Chapter 20: Low-Level Programming

Program: XOR Encryption

• A command that recovers the original message

and displays it on the screen:

xor <newmsg

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
30

2016-07-15

6

Chapter 20: Low-Level Programming

Program: XOR Encryption

• The xor.c program won’t change some

characters, including digits.

• XORing these characters with & would produce

invisible control characters, which could cause

problems with some operating systems.

• The program checks whether both the original

character and the new (encrypted) character are

printing characters.

• If not, the program will write the original

character instead of the new character.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
31

Chapter 20: Low-Level Programming

xor.c

/* Performs XOR encryption */

#include <ctype.h>

#include <stdio.h>

#define KEY '&'

int main(void)

{
int orig_char, new_char;

while ((orig_char = getchar()) != EOF) {

new_char = orig_char ^ KEY;

if (isprint(orig_char) && isprint(new_char))

putchar(new_char);

else

putchar(orig_char);
}

return 0;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
32

