
Shell Programming

UNIX Shell

Linux Commands

The shell sits between you and the operating system,
acting as a command interpreter

The user interacts with the kernel through the shell.
You can write text scripts to be acted upon by a shell

It reads your terminal input and translates the
commands into actions taken by the system. The shell
is analogous to command.com in DOS

When you log into the system you are given a default
shell

UNIX Shell

Linux Commands

The original shell was the Bourne shell, sh

Every Unix platform will either have the Bourne shell,
or a Bourne compatible shell

The default prompt for the Bourne shell is $ (or #, for
the root user)

Another popular shell is C Shell. The default prompt
for the C shell is %

Shell Programming

Linux Commands

Why write shell scripts?
To avoid repetition:

To do a sequence of steps with standard Unix
commands over and over again so why not do it
all with just one command?

To automate difficult tasks:
Many commands have difficult options to
remember every time

Shell Programming

Linux Commands

Write shell programs by creating scripts

A shell script is a text file with Unix commands in it

First line of script starts with #! which indicates to the
kernel that the script is directly executable

#! is followed with the name of shell (spaces are
allowed) to execute, using the full path name. So to set
up a Bourne shell script, the first line would be:
#!/bin/sh or
#! /bin/sh

Shell Programming

Linux Commands

The first line is followed by commands
Within the scripts # indicates a comment from that
point until the end of the line.

#! /bin/bash # bourne again shell
cd tmp
mkdir t

Specify that the script is executable by setting the
proper bits on the file with chmod:
% chmod +x shell_script.sh
To execute shell script as:
% ./shell_script.sh or
% shell_script.sh

Example Script

Linux Commands

#! /bin/csh

echo "Hello $USER"

echo "This machine is `uname -n`“

uname - print system information

-n print network node hostname

echo "The calendar for this month is:"

cal

echo "You are running these processes:"

ps

Hello khuwaja

This machine is indigo

The calendar for this month is

July 2016

Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

You are running these processes:

PID TTY TIME CMD

1952 pts/30 00:00:00 ps

4894 pts/30 00:00:13 gedit

24926 pts/30 00:00:00 tcsh

Variable Names

Linux Commands

The name of a variable can contain only letters a to z or A to Z,
numbers 0 to 9 or the underscore character _

By convention, Unix Shell variables would have their names in
UPPERCASE

Examples for valid variable names
_ALI
TOKEN_A
VAR_1

Examples for invalid variable names
2_VAR
-VARIABLE
VAR_A!

Defining Variables

Linux Commands

Variables are defined as:
variable_name=variable_value

NAME=“David Green"

Variables of this type are called scalar variables. A
scalar variable can hold only one value at a time

The shell enables to store any value in a variable
VAR1="Toronto"
VAR2=100

Accessing Variables

Linux Commands

To access value stored in a variable, prefix its name
with the dollar sign $

For example, following script would access value of
defined variable NAME and would print it on
STDOUT

#!/bin/sh
NAME=“David Green"
echo $NAME

This would produce following value
David Green

Read-only Variables

Linux Commands

Shell provides a way to mark variables as read-
only by using readonly command. After a variable
is marked read-only, its value cannot be changed

For example, following script would give error
while trying to change the value of NAME

#!/bin/sh
NAME=“David Green”
readonly NAME
NAME=“Peter”
/bin/sh: NAME: This variable is read only

Example Script

Linux Commands

#! /bin/sh
echo -n “Enter first name: “ # prompt for first name

-n = no newline
read FNAME # read first name
echo -n Enter last name: # prompt for second name
read LNAME
MESSAGE="Your name is: $LNAME, $FNAME"
echo $MESSAGE # no double quotation

necessary
Enter first name: Gulzar
Enter last name: Khuwaja
Your name is: Khuwaja, Gulzar

Shell Basic Operators

Linux Commands

Various operators supported by each shell
Arithmetic Operators
Relational Operators
Boolean Operators
String Operators

#!/bin/sh
val=’expr 2 + 2’ # spaces between operators and expressions
echo "Total value: $val“

Total value: 4

Arithmetic Operators

Linux Commands

• All conditional expressions inside square braces with spaces

Operator Description Example
+ Addition - Adds values on either side of the

operator
`expr $a + $b` will give 30

- Subtraction - Subtracts right hand operand from
left hand operand

`expr $a - $b` will give -10

* Multiplication - Multiplies values on either side
of the operator

`expr $a * $b` will give 200

/ Division - Divides left hand operand by right
hand operand

`expr $b / $a` will give 2

% Modulus - Divides left hand operand by right
hand operand and returns remainder

`expr $b % $a` will give 0

= Assignment - Assign right operand in left
operand

a=$b would assign value of
b into a

== Equality - Compares two numbers, if both are
same then returns true.

[$a == $b] would return
false.

!= Not Equality - Compares two numbers, if both
are different then returns true.

[$a != $b] would return
true.

a=10
b=20

Arithmetic Operators- Example

Linux Commands

#!/bin/sh

a=10
b=20
val=`expr $a + $b`
echo "a + b : $val"

val=`expr $a - $b`
echo "a - b : $val"

val=`expr $a * $b`
echo "a * b : $val"

val=`expr $b / $a`
echo "b / a : $val"

val=`expr $b % $a`
echo "b % a : $val"

if [$a == $b]
then

echo "a is equal to b"
fi

if [$a != $b]
then

echo "a is not equal to b"
fi

Output:

a + b : 30
a - b : -10
a * b : 200
b / a : 2
b % a : 0
a is not equal to b

Relational Operators

Linux Commands

Operator Description Example
-eq Checks if the value of two operands are equal or

not, if yes then condition becomes true.
[$a -eq $b] is not true.

-ne Checks if the value of two operands are equal or
not, if values are not equal then condition
becomes true.

[$a -ne $b] is true.

-gt Checks if the value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

[$a -gt $b] is not true.

-lt Checks if the value of left operand is less than
the value of right operand, if yes then condition
becomes true.

[$a -lt $b] is true.

-ge Checks if the value of left operand is greater
than or equal to the value of right operand, if yes
then condition becomes true.

[$a -ge $b] is not true.

-le Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

[$a -le $b] is true.

a=10
b=20

Relational Operators- Example

Linux Commands

#!/bin/sh
a=10
b=20

if [$a -eq $b]
then

echo "$a -eq $b : a is equal to b"
else

echo "$a -eq $b: a is not equal to b"
fi

if [$a -ne $b]
then

echo "$a -ne $b: a is not equal to b"
else

echo "$a -ne $b : a is equal to b"
fi

if [$a -gt $b]
then

echo "$a -gt $b: a is greater than b"
else

echo "$a -gt $b: a is not greater than b"
fi

if [$a -lt $b]
then

echo "$a -lt $b: a is less than b"
else

echo "$a -lt $b: a is not less than b"
fi

Relational Operators- Example

Linux Commands

if [$a -ge $b]
then

echo "$a -ge $b: a is greater or equal to b"
else

echo "$a -ge $b: a is not greater or equal to b"
fi

if [$a -le $b]
then

echo "$a -le $b: a is less or equal to b"
else

echo "$a -le $b: a is not less or equal to b"
fi

Output:

10 -eq 20: a is not equal to b

10 -ne 20: a is not equal to b

10 -gt 20: a is not greater than b

10 -lt 20: a is less than b

10 -ge 20: a is not greater or equal to b

10 -le 20: a is less or equal to b

Boolean Operators

Linux Commands

• Assume variable a holds 10 and variable b holds 20

Operator Description Example

! This is logical negation. This
inverts a true condition into false
and vice versa.

[! false] is true.

-o This is logical OR. If one of the
operands is true then condition
would be true.

[$a -lt 20 -o $b -gt
100] is true.

-a This is logical AND. If both the
operands are true then condition
would be true otherwise it would
be false.

[$a -lt 20 -a $b -gt
100] is false.

Boolean Operators- Example

Linux Commands

#!/bin/sh

a=10
b=20

if [$a != $b]
then

echo "$a != $b : a is not equal to b"
else

echo "$a != $b: a is equal to b"
fi

if [$a -lt 100 -a $b -gt 15]
then

echo "$a -lt 100 -a $b -gt 15 : returns true"
else

echo "$a -lt 100 -a $b -gt 15 : returns false"
fi

if [$a -lt 100 -o $b -gt 100]
then

echo "$a -lt 100 -o $b -gt 100 : returns true"
else

echo "$a -lt 100 -o $b -gt 100 : returns false"
fi

if [$a -lt 5 -o $b -gt 100]
then

echo "$a -lt 100 -o $b -gt 100 : returns true"
else

echo "$a -lt 100 -o $b -gt 100 : returns false"
fi

10 != 20 : a is not equal to b
10 -lt 100 -a 20 -gt 15 : returns true
10 -lt 100 -o 20 -gt 100 : returns true
10 -lt 5 -o 20 -gt 100 : returns false

String Operators

Linux Commands

Operator Description Example

= Checks if the value of two operands are
equal or not, if yes then condition becomes
true.

[$a = $b] is not true.

!= Checks if the value of two operands are
equal or not, if values are not equal then
condition becomes true.

[$a != $b] is true.

-z Checks if the given string operand size is
zero. If it is zero length then it returns true.

[-z $a] is not true.

-n Checks if the given string operand size is
non-zero. If it is non-zero length then it
returns true.

[-n $a] is not false.

str Check if str is not the empty string. If it is
empty then it returns false.

[$a] is not false.

a="abc"
b="efg"

String Operators- Example

Linux Commands

#!/bin/sh

a="abc"
b="efg"

if [$a = $b]
then

echo "$a = $b : a is equal to b"
else

echo "$a = $b: a is not equal to b"
fi

if [$a != $b]
then

echo "$a != $b : a is not equal to b"
else

echo "$a != $b: a is equal to b"
fi

if [-z $a]
then

echo "-z $a : string length is zero"
else

echo "-z $a : string length is not zero"
fi

if [-n $a]
then

echo "-n $a : string length is not zero"
else

echo "-n $a : string length is zero"
fi

if [$a]
then

echo "$a : string is not empty"
else

echo "$a : string is empty"
fi

String Operators- Example

Linux Commands

abc = efg: a is not equal to b
abc != efg : a is not equal to b
-z abc : string length is not zero
-n abc : string length is not zero
abc : string is not empty

Decision Making

Linux Commands

#!/bin/sh
a=10
b=20

if [$a == $b]
then

echo "a is equal to b"
elif [$a -gt $b]
then

echo "a is greater than b"
elif [$a -lt $b]
then

echo "a is less than b"
else

echo "None of the condition met"
fi

The if...else statement:

a is less than b

Decision Making

Linux Commands

The case...esac Statement

#!/bin/sh

FRUIT="kiwi"

case "$FRUIT" in
"apple") echo "Apple pie is quite tasty."
;;
"banana") echo "I like banana nut bread."
;;
"kiwi") echo "New Zealand is famous for kiwi."
;;

esac

New Zealand is famous for kiwi.

The while Loop

Linux Commands

#!/bin/sh

a=0

while [$a -lt 10]
do

echo $a
a=`expr $a + 1`

done

0
1
2
3
4
5
6
7
8
9

The for Loop

Linux Commands

#!/bin/sh

for var in 0 1 2 3 4 5 6 7 8 9
do

echo $var
done

0
1
2
3
4
5
6
7
8
9

The until Loop

Linux Commands

#!/bin/sh

i=1
until [$i -gt 6]
do

echo "Welcome $i times."
i=‘expr $i + 1’

done

Welcome 1 times.
Welcome 2 times.
Welcome 3 times.
Welcome 4 times.
Welcome 5 times.
Welcome 6 times.

The select Loop

Linux Commands

#!/bin/sh
select DRINK in tea cofee water juice all none
do

case $DRINK in
tea|cofee|water|all)

echo "Go to canteen"
;;

juice|appe)
echo "Available at home"

;;
none)

break
;;
*) echo "ERROR: Invalid selection"
;;

esac
done

$ test.sh
1) tea
2) cofee
3) water
4) juice
5) all
6) none
#? 4
Available at home
#? 6
$

The break Statement

Linux Commands

#!/bin/sh

a=0

while [$a -lt 10]
do

echo $a
if [$a -eq 5]
then

break
fi
a=`expr $a + 1`

done

0
1
2
3
4
5

The continue Statement

Linux Commands

#!/bin/sh

NUMS="1 2 3 4 5 6 7"

for NUM in $NUMS
do

Q=`expr $NUM % 2`
if [$Q -eq 0]
then

echo "Number is an even number!!"
continue

fi
echo "Found odd number"

done

Found odd number
Number is an even number!!
Found odd number
Number is an even number!!
Found odd number
Number is an even number!!
Found odd number

Chapter 22: Input/Output

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 22

Input/Output

Chapter 22: Input/Output

Introduction
• C’s input/output library is the biggest and most

important part of the standard library.
• The <stdio.h> header is the primary source of

input/output functions, including printf,
scanf, putchar, getchar, puts, and gets.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 22: Input/Output

File Pointers
• Accessing a stream is done through a file pointer,

which has type FILE *.
• The FILE type is declared in <stdio.h>.
• Additional file pointers can be declared as needed:
FILE *fp1, *fp2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 22: Input/Output

Standard Streams and Redirection
• <stdio.h> provides three standard streams:

File Pointer Stream Default Meaning
stdin Standard input Keyboard
stdout Standard output Screen
stderr Standard error Screen

• These streams are ready to use—we don’t declare
them, and we don’t open or close them.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 22: Input/Output

Standard Streams and Redirection
• A typical technique for forcing a program to

obtain its input from a file instead of from the
keyboard:
demo <in.dat

This technique is known as input redirection.
• Output redirection is similar:
demo >out.dat

All data written to stdout will now go into the
out.dat file instead of appearing on the screen.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 22: Input/Output

Standard Streams and Redirection
• Input redirection and output redirection can be

combined:
demo <in.dat >out.dat

• The < and > characters don’t have to be adjacent
to file names, and the order in which the redirected
files are listed doesn’t matter:
demo < in.dat > out.dat
demo >out.dat <in.dat

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 22: Input/Output

Text Files versus Binary Files
• <stdio.h> supports two kinds of files: text and

binary.
• The bytes in a text file represent characters,

allowing humans to examine or edit the file.
– The source code for a C program is stored in a text file.

• In a binary file, bytes don’t necessarily represent
characters.
– Groups of bytes might represent other types of data, such

as integers and floating-point numbers.
– An executable C program is stored in a binary file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 22: Input/Output

Opening a File
• Opening a file for use as a stream requires a call of

the fopen function.
• Prototype for fopen:

FILE *fopen(const char * restrict filename,
const char * restrict mode);

• filename is the name of the file to be opened.
– This argument may include information about the file’s

location, such as a drive specifier or path.
• mode is a “mode string” that specifies what

operations we intend to perform on the file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 22: Input/Output

Opening a File
• The word restrict appears twice in the

prototype for fopen.
• restrict, which is a C99 keyword, indicates

that filename and mode should point to strings.
• The C89 prototype for fopen doesn’t contain
restrict but is otherwise identical.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 22: Input/Output

Opening a File
• In Windows, be careful when the file name in a call of
fopen includes the \ character.

• The call
fopen("c:\project\test1.dat", "r")

will fail, because \t is treated as a character escape.
• One way to avoid the problem is to use \\ instead of \:

fopen("c:\\project\\test1.dat", "r")

• An alternative is to use the / character instead of \:
fopen("c:/project/test1.dat", "r")

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 22: Input/Output

Opening a File
• fopen returns a file pointer that the program can

(and usually will) save in a variable:
fp = fopen("in.dat", "r");
/* opens in.dat for reading */

• When it can’t open a file, fopen returns a null
pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 22: Input/Output

Modes
• Factors that determine which mode string to pass

to fopen:
– Which operations are to be performed on the file
– Whether the file contains text or binary data

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 22: Input/Output

Modes
• Mode strings for text files:

String Meaning
"r" Open for reading
"w" Open for writing (file need not exist)
"a" Open for appending (file need not exist)
"r+" Open for reading and writing, starting at beginning
"w+" Open for reading and writing (truncate if file exists)
"a+" Open for reading and writing (append if file exists)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 22: Input/Output

Modes
• Mode strings for binary files:

String Meaning
"rb" Open for reading
"wb" Open for writing (file need not exist)
"ab" Open for appending (file need not exist)

"r+b" or "rb+" Open for reading and writing, starting at beginning
"w+b" or "wb+" Open for reading and writing (truncate if file exists)
"a+b" or "ab+" Open for reading and writing (append if file exists)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 22: Input/Output

Modes
• Note that there are different mode strings for

writing data and appending data.
• When data is written to a file, it normally

overwrites what was previously there.
• When a file is opened for appending, data written

to the file is added at the end.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 22: Input/Output

Modes
• Special rules apply when a file is opened for both

reading and writing.
– Can’t switch from reading to writing without first

calling a file-positioning function unless the reading
operation encountered the end of the file.

– Can’t switch from writing to reading without calling a
file-positioning function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 22: Input/Output

Closing a File
• The fclose function allows a program to close a

file that it’s no longer using.
• The argument to fclose must be a file pointer

obtained from a call of fopen.
• fclose returns zero if the file was closed

successfully.
• Otherwise, it returns the error code EOF (a macro

defined in <stdio.h>).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 22: Input/Output

Closing a File
• The outline of a program that opens a file for reading:

#include <stdio.h>
#include <stdlib.h>

#define FILE_NAME "example.dat"

int main(void)
{
FILE *fp;

fp = fopen(FILE_NAME, "r");
if (fp == NULL) {
printf("Can't open %s\n", FILE_NAME);
exit(EXIT_FAILURE);

}
…
fclose(fp);
return 0;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 22: Input/Output

Closing a File
• It’s not unusual to see the call of fopen

combined with the declaration of fp:
FILE *fp = fopen(FILE_NAME, "r");

or the test against NULL:
if ((fp = fopen(FILE_NAME, "r")) == NULL) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 22: Input/Output

Miscellaneous File Operations
• The remove and rename functions allow a

program to perform basic file management
operations.

• Unlike most other functions in this section,
remove and rename work with file names
instead of file pointers.

• Both functions return zero if they succeed and a
nonzero value if they fail.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 22: Input/Output

Miscellaneous File Operations
• remove deletes a file:
remove("foo");
/* deletes the file named "foo" */

• The effect of removing a file that’s currently open
is implementation-defined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 22: Input/Output

Miscellaneous File Operations
• rename changes the name of a file:
rename("foo", "bar");
/* renames "foo" to "bar" */

• rename is handy for renaming a temporary file
created using fopen if a program should decide
to make it permanent.
– If a file with the new name already exists, the effect is

implementation-defined.
• rename may fail if asked to rename an open file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 22: Input/Output

Formatted I/O
• The next group of library functions use format

strings to control reading and writing.
• printf and related functions are able to convert

data from numeric form to character form during
output.

• scanf and related functions are able to convert
data from character form to numeric form during
input.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 22: Input/Output

The …printf Functions
• The fprintf and printf functions write a variable

number of data items to an output stream, using a format
string to control the appearance of the output.

• The prototypes for both functions end with the ...
symbol (an ellipsis), which indicates a variable number
of additional arguments:
int fprintf(FILE * restrict stream,

const char * restrict format, ...);
int printf(const char * restrict format, ...);

• Both functions return the number of characters written; a
negative return value indicates that an error occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 22: Input/Output

The …printf Functions
• printf always writes to stdout, whereas
fprintf writes to the stream indicated by its
first argument:
printf("Total: %d\n", total);
/* writes to stdout */

fprintf(fp, "Total: %d\n", total);
/* writes to fp */

• A call of printf is equivalent to a call of
fprintf with stdout as the first argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 22: Input/Output

…printf Conversion Specifications
• Both printf and fprintf require a format

string containing ordinary characters and/or
conversion specifications.
– Ordinary characters are printed as is.
– Conversion specifications describe how the remaining

arguments are to be converted to character form for
display.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

• Examples showing the effect of flags on the %d
conversion:
Conversion Result of Applying Result of Applying

Specification Conversion to 123 Conversion to –123
%8d •••••123 ••••-123

%-8d 123••••• -123••••
%+8d ••••+123 ••••-123
% 8d •••••123 ••••-123
%08d 00000123 -0000123
%-+8d +123•••• -123••••
%- 8d •123•••• -123••••
%+08d +0000123 -0000123
% 08d •0000123 -0000123

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

• Examples showing the effect of the # flag on the o, x,
X, g, and G conversions:
Conversion Result of Applying Result of Applying

Specification Conversion to 123 Conversion to 123.0
%8o •••••173

%#8o ••••0173
%8x ••••••7b

%#8x ••••0x7b
%8X ••••••7B

%#8X ••••0X7B
%8g •••••123

%#8g •123.000
%8G •••••123

%#8G •123.000
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

• Examples showing the effect of the minimum field
width and precision on the %s conversion:

Result of Applying Result of Applying
Conversion Conversion to Conversion to

Specification "bogus" "buzzword"
%6s •bogus buzzword
%-6s bogus• buzzword
%.4s bogu buzz
%6.4s ••bogu ••buzz
%-6.4s bogu•• buzz••

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

• Examples showing how the %g conversion displays some
numbers in %e form and others in %f form:

Result of Applying %.4g
Number Conversion to Number

123456. 1.235e+05
12345.6 1.235e+04

1234.56 1235
123.456 123.5

12.3456 12.35
1.23456 1.235

.123456 0.1235

.0123456 0.01235

.00123456 0.001235

.000123456 0.0001235

.0000123456 1.235e-05

.00000123456 1.235e-06
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 22: Input/Output

The …scanf Functions
• scanf always reads from stdin, whereas
fscanf reads from the stream indicated by its
first argument:
scanf("%d%d", &i, &j);
/* reads from stdin */

fscanf(fp, "%d%d", &i, &j);
/* reads from fp */

• A call of scanf is equivalent to a call of
fscanf with stdin as the first argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 22: Input/Output

The …scanf Functions
• Errors that cause the …scanf functions to return

prematurely:
– Input failure (no more input characters could be read)
– Matching failure (the input characters didn’t match the

format string)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 22: Input/Output

Output Functions
• putchar writes one character to the stdout

stream:
putchar(ch); /* writes ch to stdout */

• fputc and putc write a character to an arbitrary
stream:
fputc(ch, fp); /* writes ch to fp */
putc(ch, fp); /* writes ch to fp */

• putc is usually implemented as a macro (as well
as a function), while fputc is implemented only
as a function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 22: Input/Output

Output Functions
• putchar itself is usually a macro:
#define putchar(c) putc((c), stdout)

• Programmers usually prefer putc, which gives a
faster program.

• If a write error occurs, all three functions set the
error indicator for the stream and return EOF.

• Otherwise, they return the character that was written.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 22: Input/Output

Input Functions
• getchar reads a character from stdin:
ch = getchar();

• fgetc and getc read a character from an arbitrary
stream:
ch = fgetc(fp);
ch = getc(fp);

• All three functions treat the character as an
unsigned char value (which is then converted to
int type before it’s returned).

• As a result, they never return a negative value other
than EOF.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 22: Input/Output

Input Functions
• getc is usually implemented as a macro (as well

as a function), while fgetc is implemented only
as a function.

• getchar is normally a macro as well:
#define getchar() getc(stdin)

• Programmers usually prefer getc over fgetc.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 22: Input/Output

Program: Copying a File
• The fcopy.c program makes a copy of a file.
• The names of the original file and the new file will

be specified on the command line when the
program is executed.

• An example that uses fcopy to copy the file
f1.c to f2.c:
fcopy f1.c f2.c

• fcopy will issue an error message if there aren’t
exactly two file names on the command line or if
either file can’t be opened.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 22: Input/Output

Program: Copying a File
• Using "rb" and "wb" as the file modes enables
fcopy to copy both text and binary files.

• If we used "r" and "w" instead, the program
wouldn’t necessarily be able to copy binary files.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 22: Input/Output

fcopy.c
/* Copies a file */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
FILE *source_fp, *dest_fp;
int ch;

if (argc != 3) {
fprintf(stderr, "usage: fcopy source dest\n");
exit(EXIT_FAILURE);

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 22: Input/Output

if ((source_fp = fopen(argv[1], "rb")) == NULL) {
fprintf(stderr, "Can't open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

if ((dest_fp = fopen(argv[2], "wb")) == NULL) {
fprintf(stderr, "Can't open %s\n", argv[2]);
fclose(source_fp);
exit(EXIT_FAILURE);

}

while ((ch = getc(source_fp)) != EOF)
putc(ch, dest_fp);

fclose(source_fp);
fclose(dest_fp);
return 0;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 22: Input/Output

Output Functions
• The puts function writes a string of characters to
stdout:
puts("Hi, there!"); /* writes to stdout */

• After it writes the characters in the string, puts
always adds a new-line character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 22: Input/Output

Output Functions
• fputs is a more general version of puts.
• Its second argument indicates the stream to which

the output should be written:
fputs("Hi, there!", fp); /* writes to fp */

• Unlike puts, the fputs function doesn’t write a
new-line character unless one is present in the
string.

• Both functions return EOF if a write error occurs;
otherwise, they return a nonnegative number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 22: Input/Output

Input Functions
• The gets function reads a line of input from
stdin:
gets(str); /* reads a line from stdin */

• gets reads characters one by one, storing them in
the array pointed to by str, until it reads a new-
line character (which it discards).

• fgets is a more general version of gets that can
read from any stream.

• fgets is also safer than gets, since it limits the
number of characters that it will store.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 22: Input/Output

Input Functions
• A call of fgets that reads a line into a character

array named str:
fgets(str, sizeof(str), fp);

• fgets will read characters until it reaches the
first new-line character or sizeof(str) – 1
characters have been read.

• If it reads the new-line character, fgets stores it
along with the other characters.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 22: Input/Output

Input Functions
• Both gets and fgets return a null pointer if a

read error occurs or they reach the end of the input
stream before storing any characters.

• Otherwise, both return their first argument, which
points to the array in which the input was stored.

• Both functions store a null character at the end of
the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 22: Input/Output

Block I/O
• The fread and fwrite functions allow a

program to read and write large blocks of data in a
single step.

• fread and fwrite are used primarily with
binary streams, although—with care—it’s possible
to use them with text streams as well.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 22: Input/Output

Block I/O
• fwrite is designed to copy an array from memory

to a stream.
• Arguments in a call of fwrite:

– Address of array
– Size of each array element (in bytes)
– Number of elements to write
– File pointer

• A call of fwrite that writes the entire contents of
the array a:
fwrite(a, sizeof(a[0]),

sizeof(a) / sizeof(a[0]), fp);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 22: Input/Output

Block I/O
• fwrite returns the number of elements actually

written.
• This number will be less than the third argument if

a write error occurs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 22: Input/Output

Block I/O
• fread will read the elements of an array from a

stream.
• A call of fread that reads the contents of a file into

the array a:
n = fread(a, sizeof(a[0]),

sizeof(a) / sizeof(a[0]), fp);

• fread’s return value indicates the actual number of
elements read.

• This number should equal the third argument unless
the end of the input file was reached or a read error
occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 22: Input/Output

Block I/O
• fwrite is convenient for a program that needs to

store data in a file before terminating.
• Later, the program (or another program) can use
fread to read the data back into memory.

• The data doesn’t need to be in array form.
• A call of fwrite that writes a structure variable
s to a file:
fwrite(&s, sizeof(s), 1, fp);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 22: Input/Output

File Positioning
• Every stream has an associated file position.
• When a file is opened, the file position is set at the

beginning of the file.
– In “append” mode, the initial file position may be at the

beginning or end, depending on the implementation.
• When a read or write operation is performed, the

file position advances automatically, providing
sequential access to data.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 22: Input/Output

File Positioning
• Although sequential access is fine for many

applications, some programs need the ability to
jump around within a file.

• If a file contains a series of records, we might
want to jump directly to a particular record.

• <stdio.h> provides five functions that allow a
program to determine the current file position or to
change it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 22: Input/Output

File Positioning
• The fseek function changes the file position

associated with the first argument (a file pointer).
• The third argument is one of three macros:
SEEK_SET Beginning of file
SEEK_CUR Current file position
SEEK_END End of file

• The second argument, which has type long int,
is a (possibly negative) byte count.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 22: Input/Output

File Positioning
• Using fseek to move to the beginning of a file:
fseek(fp, 0L, SEEK_SET);

• Using fseek to move to the end of a file:
fseek(fp, 0L, SEEK_END);

• Using fseek to move back 10 bytes:
fseek(fp, -10L, SEEK_CUR);

• If an error occurs (the requested position doesn’t
exist, for example), fseek returns a nonzero
value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 22: Input/Output

File Positioning
• The file-positioning functions are best used with

binary streams.
• C doesn’t prohibit programs from using them with

text streams, but certain restrictions apply.
• For text streams, fseek can be used only to move

to the beginning or end of a text stream or to
return to a place that was visited previously.

• For binary streams, fseek isn’t required to
support calls in which the third argument is
SEEK_END.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 22: Input/Output

File Positioning
• The ftell function returns the current file

position as a long integer.
• The value returned by ftell may be saved and

later supplied to a call of fseek:
long file_pos;
…
file_pos = ftell(fp);
/* saves current position */

…
fseek(fp, file_pos, SEEK_SET);
/* returns to old position */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 22: Input/Output

File Positioning
• If fp is a binary stream, the call ftell(fp)

returns the current file position as a byte count,
where zero represents the beginning of the file.

• If fp is a text stream, ftell(fp) isn’t
necessarily a byte count.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 22: Input/Output

File Positioning
• The rewind function sets the file position at the

beginning.
• The call rewind(fp) is nearly equivalent to
fseek(fp, 0L, SEEK_SET).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

