
3/30/2016

1

EECS2031

AWK

AWK

Start
of
file

Record Record EOFRS RS . . .

FILE

RECORD

Field 1 Field 2FS FS . . . NF

Field 0

AWK --
INTRODUCTION
• AWK consists of “awk” , instructions (in quotes or a file),

and an input file

• Instructions consist of pattern and action

• Pattern, a statement or expression , regular expressions
enclosed in forward slashes

• Actions: one or more statement separated by semicolon
or new lines

• awk ‘pattern’ filename
• awk ‘{action}’ filename
• awk ‘pattern {action}’ filename

3/30/2016

2

HOW SED WORKS
• Examples
• awk ‘/mary/’
• awk ‘{print $1}’
• awk ‘/Mary/{print $1, $2}’
• awk ‘/Mary/{print $1 $2}’ file (what is the

difference?
• date
• Mon Mar 28 11:08:14 EDT 2016
• date | awk ‘{print “Month: “ $2 “\nYear: “ $6}’
• Month: Mar
• Year: 2016

SED COMMANDS
• AWK contains two special patterns: BEGIN and END. Both

are given without slashes.

• The BEGIN pattern specifies actions to be performed
before any records are processed:

• BEGIN {action}

• The END pattern specifies actions to be performed after all
records are processed:

• END {action}

• awk –F: ‘ ‘ file the input field separator is “:”

NR AND NF
• NR record number

• NF number of fields in a record

Not it’s time for
All good men to
Come to the help of
Their party

awk ‘{print “Record “ NR “has “ NF “fields and ends with “ $NF}’ file

Record 1 has 4 fields and ends with for

Record 2 has 4 fields and ends with to

Record 3 has 5 fields and ends with of

Record 6 has 2 fields and ends with party

3/30/2016

3

BEGIN -- END
Program to print a file with a header and footer.
BEGIN { print "Beginning of file";

print "-----------------" ;
}

// # Print every line in the file.
END { print "------------"; print "End of file."}

COMPARISON
• <, <=, >, >=, ==, !=

• ~ and !~ match and doesn’t match

• awk ‘$3 ~ /Bill/{print $3}’ file
• awk ‘#8 ~ /[0-9][0-9]$/ {prin $7}’ file
• awk ‘$3 > 5000{print $1}’ file
• Conditional expressions

• awk ‘{max=($1 > $2) ? $1 : $2; print max}’ file
• awk ‘$3 * $4 > 500’ file
• Awk ‘$2 == “CA”{print $1, $2}’ file

LOGICAL OPERATORS
• && || !

• awk ‘$2 > $5 && 2 <= 15’ file

• Range

• awk ‘/Bill/,/Suzanne/’ fie

3/30/2016

4

CONDITIONAL
OPERATOR
• awk ‘{print ($7 > 4) ? “high “$7 : “low “$7

• awk ‘$3== ‘Chris”{$3=“Christian”; print}’ file

VARIABLES
• name = “John” string

• number = 35 number

• to change from string to number name +0

• To change from number to string number “ “

• All fields and array elements created by the split function
are considered strings

• BEGIN {digits = “^[0-9]+$” }
• $2 ~ digits

• Will print all lines where second field is a string of digits

• index(“banana”, “an”) returns 2

• match(s,r) finds the leftmost longest substring in the
string s that is matched by the regular expression r and
returns the index where the substring begins, or 0 if no
match

• split(s,a,fs) splits the string s into array a according to
the field separator fs

• gsub(r,s) substitute s for r globally in $0 (gsub(r,s,t)

