Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

CSE2301

Grep—sed-awk

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Regular Expressions

» Regular expression (regex) describes a
set of possible strings.

» Determines if there is a match or not

« Literal string matches itself

 Consider the regex Fri

» Regex can match string in more than one
place

Today is FriFay ‘ ‘Today is Thursday

Fri

Regular Expressions

» The . (dot) regular expression matches
any character

Today is a nice

lo-1]

day




Regular Expressions

 “Character classes is used to match any
one character of the set [nfiealce |

Today is a nice day

* Negated character classes [, iricajce
(no match)

‘Today is a nice day

Regular Expressions

I |

[Tt]his matches This and this
» Can use ranges [a-z] or [A-Z] [1-9] [a-€]
For portability across languages
[a-zA-Z] = [[:alphal]]
[a-zA-z0-9] =2 [[:alnum:]]
* " beginning of line anchor

$ end of line anchor

‘Aday ‘ day$ ‘

Today is a nice day

Repetition

I |

» The * char matches the occurrence of the
regular expression preceding it zero or more

times
» ab*c matches ac abc abbc abbbbc
e ab{n} b repeated n times

e ab{n,} b repeated at least n times
» ab{n,m} b repeated at least n and at most m

» ab{3,5}c matches abbbc, abbbbc,
abbbbbc

6




Repetition

« character grouped using ()

* Xyz* matches Xy, Xyz, xyzz, xyzzz

* a(xyz)* matches a, axyz, axyzxyz, ...

* a(xy){2,3} matches axyxy and axyxyxy

Grep

I |

« Prints out all the lines in the input that
matches an expression (quoted if
whitespace).

» grep [options] pattern [file]

» Options let you do inverse search, ignore
case, ......

 grep exits with 0 (found) 1 (not fund) 2
(file not found)

» Regular expressions used in grep, sed, vi,

awk to match a pattern .

Variations of Grep

« fgrep — no regular expressions, only
matches fixed strings

 egrep — or grep —E matches extended
regular expressions

 for grep we use \(, \), \{, and \}
« for grep no escaping
« Do man grep for flags




Special characters in grep

» The shell can (and will) interpret special
characters differently.

* You have to enclose the regex in single
quotes to protect against this.

« Also you have to escape special
characters in the regular expression if you
want to match them literally
* ‘a*b’ matches b, ab, aab, aaaab
* ‘a\*b’ matches “a*b”

10

Metacharacters

Metacharacter is a character that represent something other than itself.

G Beginning of a line ‘“here’ Here at the beginning of a
line
$ End of a line ‘$here’ Line ends with here
One character ‘la..b’ A followed by 2 chars
then b
& Zero or more ‘ *abc’ Zero or more spaces
occurrence of last followed by abc
character
[1 One char in the set  ‘[LIJove Matches Love or love
(™) One character notin ‘[~A-K]Love Lines containing char not
the set in A-K followdd: by ove

Metacharacters
il el
Beginning of aword ‘\<aa’ Aword starts with aa
> End of word ‘aa\>’ Aword ends with aa

x\{m\} X repeated m times

x\{m,\}  Xrepeated at least
m times

x\{m,n\} X repeated
between m and n
times

12




Regular Expressions

« “foobar” matches (only) foobar

« ‘" Matches any single character
— f.obar matches faobar, fboar, ....

* [xyz] matches any character in the set
— fo[abo]bar matches foabar, fobbar, foobar

 [*xyz] matches any character that is not in
the set
— fo[*ab]bar matches focbar, fodbar but not
foabar

13

Regular Expressions

* ‘N matches the beginning of a string
* ‘$’ matches the end of a string
* [a-z] matches any character in the range
* [0-9] matches any digit in the range
— NABC] matches A,B, or C at the beginning of a string

— N"ABC] matches any character at the beginning of a
string except A, B, and C

— ["a-z]$ matches any single character string except a
lower case letter

14

Regular Expressions

» “\<* and “\>" matches the beginning and end
of a word

« \{n\} matches n occurrences of the last char
« \{n,\} at least n occurrences

* \{n,m\} between n and m occurrences

—"A\{4,8\}B matches any line starting with
4,5,6,7, or 8 A's followed by a B

e M\+[-)?[0-9]+\.?[0-9]*$ what is that?

15




-123.24 that is a floating point number

786 that is an integer

Regular sentence

Another field

234.23

one sentence with one letter repeated twice in a row

tigger 259 % egrep ‘let?er’ test

tigger 260 % egrep 'let*er' test

one sentence with one letter repeated twice in a row
tigger 261 % egrep ‘let+er' test

one sentence with one letter repeated twice in a row
tigger 262 % egrep 'let?er' test

tigger 263 % egrep 'one s[a-f]' test

one sentence with one letter repeated twice in a row
tigger 264 % egrep "(\+|-)?[0-9]+\.?[0-9]*$" test
234.23

tigger 265 % egrep "*(\+|-)?[0-9]+\.?[0-9]*' test
-123.24 that is a floating point number

786 that is an integer

234.23

tigger 266 % 16

Regular expressions

“other”.

end of the line.
* We can use < and > to match words
* \<[tT]he\> does the trick

17

« If you are looking for "the”, [the] will match

* you can insert space before or after, but
that will be a problem if it is at the start or

egrep

» Egrep: Additional regular expression
metacharacters are added

 + (‘one or more proceeding char)
» ? zero or one proceeding char

e a|b eitheraorb

* () groups characters

18




fgrep

 Does not recognize any metacharacters
as special characters

19

Examples

* variable names in C
e [a-zA-z][a-zA-Z0-9]*

« Dollar amout with optional cents
* \$[0-9]+(\.[0-9][0-9)?

» Time of day
* (1[012]][0-9]):[0-5][0-9] (am|pm)

20

GNU grep

« Linux uses the gnu version of grep
» Usesd POSIX character classes

* GNU grep uses the extended set is with -
E, even without —E it is available but we
have to escape it

» Extended set“? + {}| ()"




POSIX Classes

Classes Use

[:alnum:] Touse it [[:alpha:]]

[:alpha:] Grep

[entrl] ‘[[:space:]]\.[[:digit:]][:space]]’
[digit] file

[:graph:]

[:lower:] [:upper]

[:xdigit:]

[:punct:]

Other UNIX Utilities

« Unig sort tr cut find awk (more later)
xargs.

« tr x y #replace every occurrence of x
by y

 trab cd #replace every occurrence of a by
cand b byd

o tr“[a-z]" “[A-Z]" <filename
* tr—s a <filename

23

Other UNIX Utlities

 cut used to split data from files

» cut [-ffields] [-ecolumn] [-dchar] filename
e cut —-f3 -d, filename

* cut -¢30-40 filename

» find . —type d —print

* find —type f —name “*.c” —print // or * *




Other Unix Utilities

» xargs commands execute the given
command for each word in its stdin

« find —type f —name “*.c” —print |xargs wc
« which prog

» whereis prog

* bgandfg

e Command &

* Command; command,

25

UNIX Commands

» Grouping using () date; who >temp

* (date; who) >temp

o >> file << pattern Run command, if successfule run
another command

e Command && another command
e Command || another command

26

Quotes

» Escape ‘\'is used to indicate the next
character is not a special character.

« If a file name contains something like *'
data*12, we can refer to it as data\*12
» We can use ‘ ‘ every character between

these two single quotes is treated as non-
special except* cat “data*12”




Quotes

» " (back-quote) " the contents of the quote
is treated as a shell command

* echo “cat file®

» Double-quote “ “ like single quote except
the variable substitution $ and back-
guotes " are still treated as special
characters

28

Finally

» (command) is executed in a subshell
* B:4 Set B=5 %% for csh

e B=5

* echo $B vs.

e B=4

« (B=5)

« echo $B

» Forking

29

Temporary Files

» Sometimes the script needs to create a
temporary files, it should not have the
same name as an existing one.

#!1/bin/bash
newfile=$(mktemp newfileXXXX)
echo “Hello World” >${newfile}.1

Created 2 files newfile2468 and newfile2468.1




Example

« #l/usr/bin/env bash

« # cookbook filename: trackmatch

- #

« for CDTRACK in *

« do

o if ["$CDTRACK" =~ "([[:alpha:][:blank:]]*)- ([:digit:]]*) - (.*)$"]]
« then

« echo Track ${BASH_REMATCH][2]} is ${BASH_REMATCHI[3]}
« mv"$CDTRACK" "Track${BASH_REMATCHI[2]}"

o fi

. n
done bash 3.2

31

» Ludwig Van Beethoven - 01 - Allegro.ogg

* Ludwig Van Beethoven - 02 - Adagio un
poco Mmosso0.0gg

* Ludwig Van Beethoven - 03 - Rondo -
Allegro.ogg

32

sed

 Sed: Stream editor is an editor to modify
files.

« If you want to write a program to modify
files, sed is the solution

» Here is a brief introduction to sed, practice
is the best help.




sed

* sed s/day/night <old >new

 Substitute the word day in the file old by the
word new and store the results in a file called
new

 preferably sed ‘s/day/night/

« If the string contains “/” then you have to
escape it or use another delim.
—sed ‘s/\usrVlocalVbin/\\commonV/bin/' <old >new
—sed ‘s_/usr/local/bin_/common/bin_’ <old >new

34

sed — Using &

» The special character & corresponds to
the search pattern.

» For example to sed ‘s/[0-9]*/& &/' doubles
a number at the beginning of a line

e "123 cat” - “123 123 cat”

35

« If you have many commands and they
won't fit neatly on one line, you can break
up the line using a backslash:

—sed -e 's/a/A/g'\
-e 'slelElg'\
-e 'sfillig' \
-e 's/o/O/g' \
-e 's/u/U/g' <old >new




« If you have a large number of sed commands,
you can put them into a file and use
— sed -f sedscript <old >new

» where sedscript could look like this:

— # sed comment - This script changes lower case

vowels to upper case
sla/Alg

slelElg

slilllg

s/o/Olg

s/u/U/g

37




