
3/23/2016

1

CSE2301

Grep—sed-awk

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

1

Regular Expressions

• Regular expression (regex) describes a
set of possible strings.

• Determines if there is a match or not
• Literal string matches itself
• Consider the regex Fri
• Regex can match string in more than one

place
Today is Friday

Fri

Today is Thursday

2

Regular Expressions

• The . (dot) regular expression matches
any character

3

Today is a nice day

c.

3/23/2016

2

Regular Expressions

• “Character classes is used to match any
one character of the set

• Negated character classes
(no match)

4

n[iea]ce

Today is a nice day

n[^iea]ce

Today is a nice day

Regular Expressions

• [Tt]his matches This and this
• Can use ranges [a-z] or [A-Z] [1-9] [a-e]
• For portability across languages

[a-zA-Z]  [[:alpha:]]
[a-zA-z0-9]  [[:alnum:]]

• ^ beginning of line anchor
• $ end of line anchor

5

$n[iea]ce

Today is a nice day

^day day$

Repetition

• The * char matches the occurrence of the
regular expression preceding it zero or more
times

• ab*c matches ac abc abbc abbbbc
• ab{n} b repeated n times
• ab{n,} b repeated at least n times
• ab{n,m} b repeated at least n and at most m
• ab{3,5}c matches abbbc, abbbbc,

abbbbbc
6

3/23/2016

3

Repetition

• character grouped using ()
• xyz* matches xy, xyz, xyzz, xyzzz
• a(xyz)* matches a, axyz, axyzxyz, …
• a(xy){2,3} matches axyxy and axyxyxy

7

Grep

• Prints out all the lines in the input that
matches an expression (quoted if
whitespace).

• grep [options] pattern [file]
• Options let you do inverse search, ignore

case, ……
• grep exits with 0 (found) 1 (not fund) 2

(file not found)
• Regular expressions used in grep, sed, vi,

awk to match a pattern
8

Variations of Grep

• fgrep – no regular expressions, only
matches fixed strings

• egrep – or grep –E matches extended
regular expressions

• for grep we use \(, \), \{, and \}
• for grep no escaping
• Do man grep for flags

9

3/23/2016

4

Special characters in grep

• The shell can (and will) interpret special
characters differently.

• You have to enclose the regex in single
quotes to protect against this.

• Also you have to escape special
characters in the regular expression if you
want to match them literally
• ‘a*b’ matches b, ab, aab, aaaab
• ‘a*b’ matches “a*b”

10

Metacharacters

• Metacharacter is a character that represent something other than itself.
Metacha
r

Matches Example Meaning

^ Beginning of a line ‘^here’ Here at the beginning of a
line

$ End of a line ‘$here’ Line ends with here

. One character ‘la..b’ A followed by 2 chars
then b

* Zero or more
occurrence of last
character

‘ *abc’ Zero or more spaces
followed by abc

[] One char in the set ‘[Ll]ove Matches Love or love

[^] One character not in
the set

‘[~A-K]Love Lines containing char not
in A-K followed by ove11

Metacharacters

Metachar Matches Example Meaning

\< Beginning of a word ‘\<aa’ A word starts with aa

\> End of word ‘aa\>’ A word ends with aa

x\{m\} X repeated m times

x\{m,\} X repeated at least
m times

x\{m,n\} X repeated
between m and n
times

12

3/23/2016

5

Regular Expressions

• “foobar” matches (only) foobar
• ‘.’ Matches any single character

– f.obar matches faobar, fboar, ….

• [xyz] matches any character in the set
– fo[abo]bar matches foabar, fobbar, foobar

• [^xyz] matches any character that is not in
the set
– fo[^ab]bar matches focbar, fodbar but not

foabar

13

Regular Expressions

• ‘^’ matches the beginning of a string

• ‘$’ matches the end of a string

• [a-z] matches any character in the range

• [0-9] matches any digit in the range
– ^[ABC] matches A,B, or C at the beginning of a string

– ^[^ABC] matches any character at the beginning of a
string except A, B, and C

– ^[^a-z]$ matches any single character string except a
lower case letter

14

Regular Expressions

• “\<“ and “\>” matches the beginning and end
of a word

• \{n\} matches n occurrences of the last char

• \{n,\} at least n occurrences

• \{n,m\} between n and m occurrences
– ^A\{4,8\}B matches any line starting with

4,5,6,7, or 8 A’s followed by a B

• ^(\+|-)?[0-9]+\.?[0-9]*$ what is that?

15

3/23/2016

6

-123.24 that is a floating point number
786 that is an integer
Regular sentence
Another field
234.23
one sentence with one letter repeated twice in a row

tigger 259 % egrep 'let?er' test
tigger 260 % egrep 'let*er' test
one sentence with one letter repeated twice in a row
tigger 261 % egrep 'let+er' test
one sentence with one letter repeated twice in a row
tigger 262 % egrep 'let?er' test
tigger 263 % egrep 'one s[a-f]' test
one sentence with one letter repeated twice in a row
tigger 264 % egrep '^(\+|-)?[0-9]+\.?[0-9]*$' test
234.23
tigger 265 % egrep '^(\+|-)?[0-9]+\.?[0-9]*' test
-123.24 that is a floating point number
786 that is an integer
234.23
tigger 266 % 16

Regular expressions

• If you are looking for ”the”, [the] will match
“other”.

• you can insert space before or after, but
that will be a problem if it is at the start or
end of the line.

• We can use < and > to match words

• \<[tT]he\> does the trick

17

egrep

• Egrep: Additional regular expression
metacharacters are added

• + (one or more proceeding char)

• ? zero or one proceeding char

• a|b either a or b

• () groups characters

18

3/23/2016

7

fgrep

• Does not recognize any metacharacters
as special characters

19

Examples

• variable names in C
• [a-zA-z][a-zA-Z0-9]*

• Dollar amout with optional cents
• \$[0-9]+(\.[0-9][0-9)?

• Time of day
• (1[012]|[0-9]):[0-5][0-9] (am|pm)

20

GNU grep

• Linux uses the gnu version of grep

• Usesd POSIX character classes

• GNU grep uses the extended set is with -
E, even without –E it is available but we
have to escape it

• Extended set “? + { } | ()”

21

3/23/2016

8

POSIX Classes

Classes

[:alnum:]

[:alpha:]

[:cntrl:]

[:digit:]

[:graph:]

[:lower:] [:upper:]

[:xdigit:]

[:punct:]

Use

To use it [[:alpha:]]

Grep
‘[[:space:]]\.[[:digit:]][:space]]’
file

22

Other UNIX Utilities

• Uniq sort tr cut find awk (more later)
xargs.

• tr x y # replace every occurrence of x
by y

• tr ab cd #replace every occurrence of a by
c and b by d

• tr “[a-z]” “[A-Z]” <filename

• tr –s a <filename

23

Other UNIX Utlities

• cut used to split data from files

• cut [-ffields] [-ccolumn] [-dchar] filename
• cut –f3 –d, filename
• cut –c30-40 filename

• find . –type d –print

• find –type f –name “*.c” –print // or ‘ ‘

•

24

3/23/2016

9

Other Unix Utilities

• xargs commands execute the given
command for each word in its stdin

• find –type f –name “*.c” –print |xargs wc
• which prog
• whereis prog
• bg and fg
• Command &
• Command; command;

25

UNIX Commands

• Grouping using () date; who >temp

• (date; who) >temp

• >> file << pattern

• Command && another command

• Command || another command

Run command, if successfule run
another command

26

Quotes

• Escape ‘\’ is used to indicate the next
character is not a special character.

• If a file name contains something like ‘*’
data*12, we can refer to it as data*12

• We can use ‘ ‘ every character between
these two single quotes is treated as non-
special except ‘ cat ‘data*12’

27

3/23/2016

10

Quotes

• ` (back-quote) ` the contents of the quote
is treated as a shell command

• echo `cat file`

• Double-quote “ “ like single quote except
the variable substitution $ and back-
quotes ` are still treated as special
characters

28

Finally

• (command) is executed in a subshell
• B=4
• B=5
• echo $B vs.
• B=4
• (B=5)
• echo $B
• Forking

Set B=5 %% for csh

29

Temporary Files

• Sometimes the script needs to create a
temporary files, it should not have the
same name as an existing one.

#!/bin/bash
newfile=$(mktemp newfileXXXX)
echo “Hello World” >${newfile}.1
Created 2 files newfile2468 and newfile2468.1

30

3/23/2016

11

Example

• #!/usr/bin/env bash
• # cookbook filename: trackmatch
• #
• for CDTRACK in *
• do
• if [["$CDTRACK" =~ "([[:alpha:][:blank:]]*)- ([[:digit:]]*) - (.*)$"]]
• then
• echo Track ${BASH_REMATCH[2]} is ${BASH_REMATCH[3]}
• mv "$CDTRACK" "Track${BASH_REMATCH[2]}"
• fi
• done

bash 3.2

31

• Ludwig Van Beethoven - 01 - Allegro.ogg

• Ludwig Van Beethoven - 02 - Adagio un
poco mosso.ogg

• Ludwig Van Beethoven - 03 - Rondo -
Allegro.ogg

32

sed

• Sed: Stream editor is an editor to modify
files.

• If you want to write a program to modify
files, sed is the solution

• Here is a brief introduction to sed, practice
is the best help.

33

3/23/2016

12

sed

• sed s/day/night <old >new
• Substitute the word day in the file old by the

word new and store the results in a file called
new

• preferably sed ‘s/day/night/’
• If the string contains “/” then you have to

escape it or use another delim.
– sed ‘s/\/usr\/local\/bin/\/common\/bin/’ <old >new
– sed ‘s_/usr/local/bin_/common/bin_’ <old >new

34

sed – Using &

• The special character & corresponds to
the search pattern.

• For example to sed ‘s/[0-9]*/& &/’ doubles
a number at the beginning of a line

• “123 cat”  “123 123 cat”

35

• If you have many commands and they
won't fit neatly on one line, you can break
up the line using a backslash:
– sed -e 's/a/A/g' \

-e 's/e/E/g' \
-e 's/i/I/g' \
-e 's/o/O/g' \
-e 's/u/U/g' <old >new

36

3/23/2016

13

• If you have a large number of sed commands,
you can put them into a file and use
– sed -f sedscript <old >new

• where sedscript could look like this:
– # sed comment - This script changes lower case

vowels to upper case
s/a/A/g
s/e/E/g
s/i/I/g
s/o/O/g
s/u/U/g

37

