
CSE2031
Lab 3

Winter 2016

In this lab, you will implement a simple RPN calculator. Since this is your third lab,
and you haven't seen pointers and string manipulation yet, your calculator is a
very simple one without any input validation or error checking. Later on in the
term, you will write a more sophisticated RON calculator. For now, we assume
that the input is given to you without exactly as stated.

Reverse Polish Notation

RPN is a mathematical notation in which the operator follows all of its operands.
https://en.wikipedia.org/wiki/Reverse_Polish_notation For example in the normal
notation we are used to, adding 2 numbers looks like

3 + 4 the first operand (3) followed by the operator (+) then the second operand
(4) the operator takes these 2 operands and does the operation (7).

In RPN, the operator follows the operands, we assume that operators and
operands are put in a stack, operands are pushed in a stack, then the operator
pops (removes) its operands from the stack, perform the operation, and push the
result on the stack.

Assume the top of the stack is to the right, we push on the stack the numbers 4,
3, 6, and 8, the stack looks like

4,3,6,8 (8 is at the top of the stack)

The next element is the '+' operator, it needs two operands to add them. It pops
the top 2 elements in the stack (6 and 8) adds them (14) and pushes the 14 back
on the stack. Now the stack looks like

4,3,14

if the next input is a number (8) it will be pushed in the stack, now the stack is

4,3,14,8

The next input is '*' it removes 14 and 8, multiply them (112) and pushes the
result in the stack, now the stack looks like

4,3,112
The next input is '/' then it removes 112, and 3. Divides 3/112 = 0 (integer

division) and pushes back the result in the stack, now the stack looks like

4,3,37

That means the input is either an integer, or a character. You don't know before
hand what the input will be. That means you can not use %s or %d in your
scanf. The solution is easy, there is a function called

int atoi(string)

That is ASCII to int, string is an array of character. That function takes a string,
and return the binary number corresponding to the string.
For example

atoi(“1234”) returns 1234
atoi(“0”) returns 0
atoi(“As&*”) returns 0

The last atoi returns a 0, in this case 0 means invalid integer. So, when you
receive a 0, does that mean the input was a 0, or invalid input? We cannot tell
(for now, later on we will learn how to do this). For now, I will not test invalid
input, so a 0 means the integer ZERO.

C code

Specifications

Write a C program for a RPN calculator. The calculator reads its input from the
standard input, and display the result (if requested) on the standard output.
It should +do the following:

• If the input is an integer, the integer is stored in the stack.
• The stack has a maximum length of 50 elements.
• The allowed inputs are integers, '+', '-', '*', '/', 'p', and 'q' int division
• if the input is an operator (+, =, * or /), then the top 2 elements are

popped out of the stack, the operation is performed as second-top op top,
and the result is pushed back in the stack. I have corrected the sample
output

• If the input is 'p', the calculator prints on the screen the top of the stack.
The top should be printed as integer in 10 spaces right justified followed by
a new line.

• If the input is 'q', the program terminates.

Submit as submit 2031 L3 L3.c

Exercise

Here are some more exercises, do not submit them. They definitely will be of help
in lab tests and the final exam:

Binary adder:
the input is three strings, the first and third are binary strings of size 32 max.
The second string is either “+” or “-”.
The first and third strings are binary representation of an integer number. Your
program will perform addition or subtraction in binary and display the result in
binary. Assume there is no overflow or underflow.

For example, the inputs are
01010010
+
00110101

 1000111
Zeros to the left may be omitted, for example
11010
+
11
that means
11010
+
00011
11101

When you display the answer, display only the non zero bits followed by a
newline.
Two's complement
The program reads a string that represent a binary number and displays the two's
complement.
The input could be up to 32-bit number (a string of up to 32 characters of 1's and
0's only similar to the input in the previous exercise).
Display the number as 32-bit number, or you can omit the 0's or 1's to the left
(you must have at least one 0, or 1 as the leftmost digit in order to differentiate
between positive and negative numbers.

Reverse Polish Notation with simple input checking
Modify the RPN program such that if the input is not one of the allowed integer or
characters, the program should display “Invalid input” followed by a new line and
continue execution (waiting for next input) without modifying the stack.

