
1

CSE2301

Unix/Linux

Introduction

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Introduction

• In this part, we introduce
– OS (Linux)

– File system

– Shell commands

– Pattern matching

– Shell programming

Unix

• What does an OS do?
– File management

– Scheduling

– Memory management

– I/O management

• Examples

2

Unix

• OS includes

• Kernel: Performs key OS functions

• System programs: various tools

• Shell: Interface to the user

Processes

• Each program running is called a process

• Each process has its own identification
PID

• If the program is running twice, even by
the same user, these are 2 different
processes.

File System

• In Unix, the files are organized into a tree
structure with a root named by the
character ’/’.

• Everything in the file system is a file or
subdirectory

3

Our File System

/

bin boot cs home

awk
include cs…

…

aio.h

File System

• File names could be relative (with respect
to the current directory) or using full path
name (relative to /) for example aio.h or
/cs/include/aio.h

• Your home directory is ~username, so in
my case ~aboelaze/test.c is equivalent to
/cs/home/aboelaze/test.c

Devices

• /dev contains devices, just like any other
file (fopen, fread, fwrite, ..) but it
communicate with a device.

• /dev/tty

• /dev/null

• /dev/zero

4

Unix Commands

• ls cp mv rm mkdir cd pwd cat less more
head tail ….

• bg, fg, CTRL-C, CTRL-Z

• kill ps od diff ln echo …

• Redirection and pipes Examples

• tigger 215 % ls –las
• total 44
• 4 drwx------ 2 aboelaze faculty 4096 Nov 29 13:44 ./
• 4 drwx------ 9 aboelaze faculty 4096 Nov 29 14:47 ../
• 4 -rw------- 1 aboelaze faculty 184 Nov 18 13:30 data
• 4 -rw------- 1 aboelaze faculty 23 Nov 28 19:52 file1
• 4 -rw------- 1 aboelaze faculty 24 Nov 28 19:52 file2
• 4 -rw------- 1 aboelaze faculty 481 Nov 29 12:27 mergefiles.awk
• 4 -rw------- 1 aboelaze faculty 178 Nov 28 19:32 p1
• 4 -rw------- 1 aboelaze faculty 1245 Nov 18 13:29 prchecks.awk
• 4 -rw------- 1 aboelaze faculty 83 Nov 14 17:46 t
• 4 -rwx------ 1 aboelaze faculty 35 Nov 21 13:08 test.sh*
• 4 -rw------- 1 aboelaze faculty 50 Nov 1 18:31 unmatched
• chmod 744 file What does it mean?
• chmod [ugo][+-][rwx] chmod ug+rw p1

Basic UNIX Commands

• ls, cp, mv, rm, mkdir, cd, pwd

• cat, more, less, head, tail

• diff, who, date, ps, kill, od, du, cal

• chmod, chgrp, pipeline

• Redirection
– command >file

– commnad >>file

– command <file >file1

5

Sequence of Commands

• command1; command2

• (command1; command2) what is the difference

• command1 && command2

• command1 || command2

Quotations mark

• ddouble quote some characters

• Single quote -- ,No evaluation

• back quote – execute command

• x= this is true

• x=“this is true”

• echo $x

• echo “$x”

• echo ‘$x’

Shell Pattern Matching--Wild Cards

• The character * matches any string of
characters

• ? Matches a single character

• [0-9] matches any digit

• [a-z] matches any small case letter

• [abc] x[ab]y matches xay and xby

• \c matches c only

• a|b matches a or b in case expression only

6

Shell Variables

• set x = 3 -- csh

• x=3 -- sh (no spaces around the “=“)

• echo x

• echo $x what is the difference

• B=5 C=3 D=2 -- That is O.K.

• Valid variables begin with a letter, contains
letters, numbers and _ a5_6

PATH path

• The shell searches in PATH looking for the
command you typed

• echo $PATH .:/usr/local/bin:/usr/ucb:
/usr/bin /usr/etc:/etc:/bin:/usr/bin/X11

• set path = ($path /a/b/c) --csh

• PATH=$PATH:/a/b/c --sh

• Aliases and startup files

Shell scripting

#!/cs/local/bin/sh
echo “Hello World”

tigger 397 % script1
Hello World
tigger 398 %

echo -n “Hello
World”

tigger 393 % script1
Hello Worldtigger 394 %

#!/cs/local/bin/sh
echo "Now I will guess your OS"
echo -n "Your OS is : "
uname

tigger 399 % script1
Now I will guess your OS
Your OS is : Linux
tigger 400 %

7

Shell Scripting

#!/cs/local/bin/sh
echo -n "Please enter your first name : "
read FNAME
echo -n "Last name pelase : "
read LNAME
MESSAGE=" Your name is : $LNAME , $FNAME"
echo "$MESSAGE"

tigger 439 % script3
Please enter your first name : Mokhtar
Last name pelase : Aboelaze
Your name is : Aboelaze , Mokhtar

Shell Scripting

#!/cs/local/bin/sh
read FNAME
echo "1-> $FNAME123"
echo "2-> ${FNAME}123"

tigger 454 % script4
abcd
1->
2-> abcd123
tigger 455 %

Shell Scripting

Set the initial value.
myvar=abc
echo "Test 1 ======"
echo $myvar # abc
echo ${myvar} # same as above, abc
echo {$myvar} # {abc}

$ sh var_refs
Test 1 ======
abc
abc
{abc}

echo "Test 2 ======"
echo myvar # Just the text myvar
echo "myvar" # Just the text myvar
echo "$myvar" # abc
echo ‘$myvar’
echo "\$myvar" # $myvar

Test 2 ======
myvar
myvar
Abc
$myvar
$myvar

echo "Test 3 ======"
echo $myvardef # Empty line
echo ${myvar}def # abcdef

Test 3 ======

abcdef

8

Shell Scripting

echo "Test 4 ======"
echo $myvar$myvar # abcabc
echo ${myvar}${myvar} # abcabc
echo "Test 5 ======"
Reset variable value, with spaces
myvar=" a b c"
echo "$myvar" # a b c
echo $myvar # a b c

Test 4 ======
abcabc
abcabc
Test 5 ======

a b c
a b c

Special variables

• Special variables starts with $

• $? The exit status of the last command

• $$ The process id of the shell

• $* String containing list of all arguments

• $# Number of argument

• $0 Command line

Special Substitution

• Various special substitutions:
• ${name-word} - value of name if it exists,
• otherwise “word”
• ${name+word} - “word” if name exists, blank

otherwise
• ${name=word} - if name does not exist, sets
• variable name to word, substitutes value of

name
• ${name?word} - if name does not exist then

prints an error (“word”) then exits shell -
otherwise substitutes value of name

9

Special substitution

• aboelaze@indigo echo ${v-goodbye}

• goodbye

• aboelaze@indigo v=Hello

• aboelaze@indigo echo ${v-goodbye}

• Hello

• aboelaze@indigo

Read

• So if stdin has 'hello there world'
• read a b c
• (a = 'hello', b = 'there', c = 'world')
• read a b
• (a = 'hello', b = 'there world')
• read a b c d
• (a = 'hello', b = 'there', c = 'world’, d is

empty)

Read

• read with just one argument assigns entire line
• read x
• This reads a line from stdin and puts it in ‘x’.
• read is a built-in command with an exit status of 0 on

success, or non-zero on failure or EOF
• When reading input, read by defaults separates words

by space and tab characters
• Can change separator by setting the environment
• variable IFS:
• • IFS=:

10

read

• aboelaze@indigo read x
• Hello and goodbye
• aboelaze@indigo echo $x
• Hello and goodbye
• aboelaze@indigo read x y
• hello and goodbye
• aboelaze@indigo echo $x
• hello
• aboelaze@indigo echo $y
• and goodbye
• aboelaze@indigo

Arithmetic operations

• Does this work?
• x=5
• y=$x+1 ## echo $y  5+1
• y=$x + 1 ## + command not found
• $ z=5
• $ z=`expr $z+1` ---- Need spaces around +

sign.
• $ echo $z 5+1 $ z=`expr $z + 1`
• $ echo $z 6

Arithmetic Operations

• expr command supports only integer
arithmetic.

• sum=`expr $a + $b`

• diff=`expr $a - $b`

• prod=`expr $a * $b`

• quot=`expr $a / $b`

• remind=`expr $a % $b`

SPACES !@#$

