
1

CSE2301

Dynamic Memory Allocation and
Structs

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

These slides are based on slides by Prof. Wolfgang
Stuerzlinger at York University

Dynamic memory Allocation

• How to allocate memory during run time.

• int x=10;

• int myarray[x]; That is not allowed in C

malloc()

• In stdlib.h

• void *malloc(int n);

• Allocate memory at run time.

• Returns a pointer (to a void) to at least n
bytes available.

• Returns null if the memory was not
allocated.

• The memory are not initialized.

2

calloc()

• void *calloc(int n, int s);

• Allocates an array of n elements where
each element has size s;

• calloc initializes memory to 0.

realloc()

• What if we want our array to grow (or
shrink)?

• void * realloc(void *ptr, int n);
• Resizes a previously allocated block of

memory.
• ptr must have been returned from either

calloc, malloc, or realloc.
• Array me be moved it it could not be

extended in its current location.

free()

• void free(void *ptr)

• Releases the memory we previously
allocated.

• ptr must have been returned by malloc,
alloc, or realloc.

3

#include<stdio.h>

#include<stdlib.h>

main() {

int *a, i,n,sum=0;

printf(“Input an aray size “);

scanf(“%d”,&n);

a=calloc(n, sizeof(int));

for(i=0; i<n; i++) scanf(“%d”,&a[i]);

for(i=0; i<n; i++) sum+=a[i];

free(a);

printf(“Number of elelments = %d and the sum is %d\n”,n,sum);

}

Trouble with Pointers

• Overruns and underruns
– Occurs when you reference a memory

beyond what you allocated.

• Uninitiaized pointers

• int *x;
*x=20;

Trouble with Pointers

• Uninitialized pointers
main() {

char *x[10];

strcpy(x[1],”Hello”);

}

4

Trouble with Pointers

• Null-Pointers De-referencing
main() {

int *x;

int size;

x=(int*) malloc(size);

*x = 20; // What is wrong

}

Trouble with Pointers

• A better way of doing it
x=(int *) malloc(size);

if(x == NULL) {

printf(“ ERROR …\n”);

exit(1);

}

*x=20;

Memory Leaks

• int *x;

• x=(int *) malloc(20);

• x=(int *) malloc(30);

• The first memory block is lost for ever.

• MAY cause problems (exhaust memory).

5

Trouble with Pointers

• Inappropriately use freed memory

• char *x;

• x=(char *) malloc(50);

• free(x);

• x[0]=‘A’;
Does work on my system

Trouble with Pointers

• Inappropriately freed memory
• char *x=NULL;
• free(x);

• x=malloc(50);
• free(x+1);

• free(x)
• free(x)

Structures

• struct {

• float width;

• float height;

• } chair, table;

• chair and table are variables

• struct { … } is the type

6

Structures

• Accessing the members is done via .
Operator

• chair.width=10;

• table.height= chair.width+20;

• Struct’s can notbe assigend

• chair = table;

• &chair is the address of the variable chair
of type struct {….}

Structures

• struct dimension {

• float width;

• int height;

• };
• Now, struct dimension is a valid type

• struct dimension a,chair,table;

Structures

• Struct names have their own namespace
separate from variables and functions;

• Struct member names have their own
namespace.

• struct dimension dimension;
• struct dimesnsion {
• float width;
• float height;
• } height;




7

Structures

• You can pass structure as arguments fo
functions

• float get_area(struct dimension d) {

• return d.width * d.height;

• }

• This is a call-by-value, a copy of the structure is
sent to the function

Structures

• Structure can returned from functions.

• struct dimension make_dim(int width, int
height) {

• struct dimension d;

• d.width = width;

• d.height = height;

• return d;

• }

Structure Pointers

• struct dimension table, *p;

• p= &table;

• *p.width

• (*p).width;

• You can use

• p->width;

WRONG, . has a higher precedence

8

Structures

• It is inefficient to pass large structures to
functions, instead use pointers and you
can manipulate the same structure.

Example

• #include <stdio.h>
• main() {
• struct {
• int len;
• int height;
• } tmp, *p=&tmp;
• tmp.len=10;
• tmp.height=20;
• printf(" 111 %d \n",++(p->len));
• printf(" 222 %d \n",++p->len);
• }

111 11

222 12

Linked List

• struct list {

• int data;

• struct list *next;

• };

• It is O.K. to use a pointer to a struct that is
declared but not defined

3

9

Linked List

• Pointer head points to the first element

• Last element pointer is NULL

3 3 3 NULL

head

Linked List

#include <stdio.h>
#include <stdlib.h>
main() {

struct list{
int len;
struct list *next;

} *head,*p,*last;
head=(struct list *)malloc(sizeof(list));
head->len=1;
head->next=NULL;
last=head;
int i;
scanf("%d",&i);

while(i>=0) {
scanf("%d",&i);
p = (struct list *)malloc(sizeof(list));
p->len=i;
p->next=NULL;
last->next=p;
last=p;

}
printf("Enter the number you want to
search for ");
scanf("%d",&i);
for(p=head; p!=NULL; p=p->next)
if(p->len == i)

printf("FOUND \n");

}

Delete a node

• void deleteit(dim **p, int i) {
• // DOES NOT WORK 1st element
• dim **p1,*temp;
• p1=p;
• while((*p1)->num != i) p1=&(*p1)->next;
• temp = *p1;
• *p1 = (*p1)->next;
• free(temp);
• }

p is a pointer to head (pointer to
1st element in list

Debug it

10

Array of Structures

• struct dimension {
• float width;
• float height;
• };
• struct dimension chairs[2];
• struct dimension *tables;
• tables = (struct dimension*) malloc

(20*sizeoff(struct dimension));

Initializing Structures

• struct dimension sofa={2.0, 3.0};

• struct dimension chairs[] = {

• {1.4, 2.0},

• {0.3, 1.0},

• {2.3, 2.0} };

Nested Structures

• struct point {int x, int y;};

• struct line {

• struct point a;

• struct point b;

• } myline;

• myline.a.x=0;

• myline.a.y=5;

11

Structs

• struct {float w,h;} chair;

• struct dim {float w,h;} chair1;

• struct dim {float w,h;};

• struct dim chair2;

• typedef struct {float w,h;} dim;

• dim x,y;

typedef

• We can define a new type and use it later
typedef struct {

int x,y;
float z;

} newtype;
newtype a1,b1,c1,x;

• Now, newtype is a type in C just like int
and float

Unions

• union value {
• int I;
• char c;
• float f;
• };
• Similar to struct but all variables share the same

memory location, we access them differently
• unin value v;
• v.f=2.3; v.i=45; ….

12

Enumeration

• enum state {

• IN,

• OFF,

• }x;

• x=IN; if (x==OFF) { … };

• Values starts at zero unless otherwise
specified

Enumeration

• enum my_var {

• RED = 1,

• BLUE , /* by definition 2 */

• GREEN = 16,

• YELLOW , /* 17 */

• };

