
1

EECS2031

Introduction

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

Introduction

• Instructor: Mokhtar Aboelaze

• Room 2026 CSEB
lastname@cse.yorku.ca x40607

• Office hours W 2:00-4:00 or by
appointment

Grading Details

• Lab 10%

• 3 tests 20% each (total 60%)

• Final 30%

2

About the course

• By the end of the course, the students will
be expected to be able to:
– Use the basic functionality of the Unix shell, such as

standard commands and utilities, input/output
redirection, and pipes

– Develop and test shell scripts of significant size.

– Develop and test programs written in the C
programming language.

– Describe the memory management model of the C
programming language

Introduction

• Course Content

• C
– Learn how to write test, and debug C

programs.

• UNIX (LINUX)
– Using Unix tools to automate making and

testing.

– Unix shell programming

Text

• The C Programming Language, Kernighan
and Ritchie (K+R)

• C Programming: A Modern Approach 2nd

edition K.N. King (optional)

• Practical Programming in the UNIX
Environment, edited by W. Sturzlinger

• Class notes (Slides are not complete,
some will be filled in during class).

• Man pages

3

Course Objective

• By the end of the course, you should be
able to
– Write applications (though small) in C

– Test and debug your code

– Use UNIX to automate the compilation
process

– Write programs using UNIX shell scripts and
awk

WHY C and UNIX

• Wide use, powerful, and fast

• Both started at AT&T Bell Labs

• UNIX was written in assembly, later
changed to C

• Many variants of UNIX

WHY C and UNIX

• The first part of the course is C

• The second part shell script (sh)

• We will start with a quick introduction to
Unix to be able to start the labs.

• Lab 1 is this week (introduction to Unix)

• Lab policy

4

Introduction to Unix

• Please check the tutorial at
http://www.cs.sfu.ca/~ggbaker/reference/unix/

• The first 4 tutorials

• Blackboard

C – A History

• In 1978 Brian Kernighn and Dennis Ritchie
Published their “ehite” book. Became
defacto standard for C known as K&R C.

• ANSI completed a standard for C
approved in 1989 as ANSI X3.159-1989
known as C89 or C90 (ANSI-C).

• C99 became standard in ISO/IEC
9899:1999.

Languages based on C

• C++ basically object oriented C

• Java C syntax, much more restrictive +
garbage collection

• C#

• Perl started as scripting language,
overtime adopted many features of C

5

C

• Almost low level, small, permissive (assumes
you know what are you doing) language.

• Efficient, portable, powerful, and flexible (from
system programming to embedded systems).

• Can be error prone, difficult to understand
(see next slide)

Obfuscated C

int v,i,j,k,l,s,a[99];

main(){

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k
=i<s,j+=(v=j<s&&(!k&&!!printf(2+"\n\n%c"
-(!l<<!j)," #Q"[l^v?(l^j)&1:2])&&++l ||
a[i]<s&&v&&v-i+j&&v+i-j))&&!(l%=s),v||
(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[--i])

;

}

Tips

• Use tools to make programs more reliable

• Use existing code library

• Adopt a sensible set of coding conventions

• Avoid tricks and overly complex code (do
not ever do something like the Q8.c)

6

Software Development Cycle

Idea/specs Design Coding Program

TestingDebugging

Why Testing

• Specifications = LAW, you have to obey it.

• No changes (improvement) unless it is approved

• If in doubt, ask

• First create test cases, test, if error, debug,
repeat

• Testing can show the presence of faults, not
their absence -- Dijkstra

• Testing is very costly, in large commercial
software 1-3 bugs per 100 line of code.

Why Testing

• 1990 AT&T long distance calls fail for 9 hours
– Wrong location for C break statement

• 1996 Ariane rocket explodes on launch
– Overflow converting 64-bit float to 16-bit integer

• 1999 Mars Climate Orbiter crashes on Mars
– Missing conversion of English units to metric units

• Therac: A radiation therapy machine that delivered
massive amount of radiations killing at lease 5
people
– Among many others, the reuse of software written for a machine

with hardware interlock. Therac did not have hardware interlock.

7

Why Testing

– Jan 13, 2005, LA Times

“A new FBI computer program designed to
help agents share information to ward off
terrorist attacks may have to be scrapped,
forcing a further delay in a four-year, half-
billion-dollar overhaul of its antiquated
computer system… Sources said about $100
million would be essentially lost if the FBI
were to scrap the software…”

Type of Errors

• Errors in program called bugs

• Testing is the process of looking for errors,
debugging if found

• Three types of errors
– Syntax

– Run-time

– Logic

Syntax Errors

• Mistakes by violating “grammar” rules

• Diagnosed by C++ compiler

• Must fix before compiler will translate code

8

Syntax Errors

• #<include stdio.h>
• int main ();
• (
• printf(‘Hello World’);
• /* Next line will output
• a name! /*
• printf(“ Total is %d

\n”,total);
• printf(“Final result is

\n,result);
• }

#include <stdio.h>
int main()
{
printf(“Hello World”);

/*next line will output
A name */

Printf(“Total is %d
\n”,total);

printf(“Final result is
\n”,result););
}

Runtime Errors

• Violation of rules during execution of
program

• Computer displays message during
execution and execution is terminated

• Error message may help locating error

• E.g. X= 5 / 0;

Logical Errors

• Will not be detected by the compiler, may
or may not produce an error message (if it
results in a runtime error)

• Difficult to find

• Execution is complete but output is
incorrect

• Programmer checks for reasonable and
correct output

9

C Syntax

• Java-like (Actually Java has a C-like
syntax), some differences

• No //, only /* */ multi line and no nesting

• No garbage collection

• No classes

• No exceptions (try … catch)

• No type strings

First C Program

/* Our first program */

#include <stdio.h>

void main() {

printf(“Hello World \n”);

}

Special Characters

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character

\’ Single quote

10

Formatting Output

printf("|%d|%5d|%-5d|%5.3d\n",i,i,i,i);

printf("|%10.3f|%-10.3f|%f|%g|%e\n",x,x,x,x,x);

|40| 40|40 | 040
| 8.100|8.100 |8.100000|8.1|8.100000e+00

Data Types

• 4 basic types in C
– char – Characters

– int -- Integers

– float – Single precision floating point numbers

– double – Double precision floating point
numbers

Modifiers

• signed (unsigned) int long int

• long long int

• int may be omitted

• sizeof()

11

Input

• Scanf is used to read from the standard
input

• scanf(“%d %d\n”,&i,&j);

• scanf(“%d%d\n”),&i,&j);

• scanf(“%d,%d\n”),&i,&j);

• scanf(“%d, %d\n”),&i,&j);

Characters

• One byte

• Included between 2 single quotes

• char x =‘A’

• Character string “This is a string”

• ‘A’ != “A”

• X=‘\012’ newline or 10 decimal

A A \0

Characters

12

Boolean Expressions

• Relational operators

• ==, !=, <, <=, >, >=

• Logical operators

• &&, ||, !

I/O

• Every program has a standard input and
output (stdin, stdout and stderr)

• Usually, keyboard and monitor

• Can use > and < for redirection

• printf(“This is a test %d \n”,x)

• scanf(“%x%d”,&x,&y)
%d %s %c %f %lf

integer string character float double precision

I/O

• int getchar
– Returns the next character on standard input

or EOF if there are no characters left.

• int putchar(int c);
– Writes the character c on the standard output

• int printf(char *format,…)

• printf(“The result is %f \n”,x);

13

C Basics

• Variable name is a combination of letters,
numbers, and _ that does not start with a
number and is not a keyword

• Abc abc5 aA3_ but not 5sda
• #include <filename.h> replaces the

include by the actual file before
compilation starts

• #define abc xyz replaces every occurrence
of abc by xyz

C Basics

• Expressions
• abc= x+y*z
• J=a%i
• ++x vs. x++
• X += 5;

// x = x + 5;
• Y /= z;

// Y = Y / z
What is x *= y+1 ?

C Basics

• Decimal numbers 123487

• Octal: starts with 0 0654

• Hexadecimal starts with 0x or 0X ox4Ab2

• 7L for long int =7

• 8U for unsigned

• For floats 24, 23.45, 123.45e-8, 3.4F,
2.15L

14

Mixed type arithmetic

int

int
int

double

double
double

int

double
double

int x=5, y=2, w;
double z, q = 2;

z = x/y;
// z = 2.0

w = x/y;
// w = 2

z = x/q;
// z = 2.5

w = x/q;
// w = 2

Mixed type arithmetic

• 17 / 5
– 3

• 17.0 / 5
– 3.4

• 9 / 2 / 3.0 / 4
– 9 / 2 = 4
– 4 / 3.0 = 1.333
– 1.333 / 4 = 0.333

Mixed type arithmetic

• How do you cast variables?
e.g.

int varA = 9, varB = 2;

double varC;

varC = varA / varB; // varC is 4.0

varC = varA / (double) varB // varC is 4.5

Doesn’t change the value of varB,
just changes the type to double

15

Pre- and Post- Operators

• ++ or --

• Place in front, incrementing or decrementing occurs BEFORE value
assigned

• Place in back, occurs AFTER value assigned

k = i++;

k = ++i;

i = 2 and k = 1

k =--i;

k = i--;

i = i + 1;
k = i;

3
3

i = i - 1;
k = i;

1
1

k = i;
i = i + 1;

2
3

k = i;
i = i - 1;

2
1

i = 2 and k = 1

Precedence

• () Parentheses L to R 1
• ++, - - Postincrement L to R 2
• ++, - - Preincrement R to L 3
• +, - Positive, negative L to R 3
• *, /, % Multiplication, division L to R 4
• +, - Addition, subtraction L to R 5
• <=, >=, >, < Relational operator L to R 6
• ==, != Relational operator L to R 7
• && Logical AND L to R 8
• || Logical OR L to R 9
• +=, -+, *=, /=, %= Compound assignment R to L 10
• = Assignment R to L 10

Examples

• int a=2, b=3; c=5, d=7, e=11, f=3;

• f +=a/b/c;

• d -=7+c*--d/e;

• d= 2*a%b+c+1;

• a +=b +=c +=1+2;

3

-3

7

13

16

Bitwise Operators

• Works on the individual bits

• &, |, ^, ~

• short int i=5, j=8;

• k=i&j;

• k=i|j;

• k=~j;

Bit Shifting

• x<<y means shift x to the left y times

• x>>y means shift x to the right y bits

• Shifting 3 many times
0 3

1 6

2 12

3 24

4 48

13 49512

14 32768

Bit Shifting

• What about left shifting

• If unsigned, 0 if signed undefined in C

• It could be logical (0) or arithmetic (sign)

• Unsigned int I =714

• 357 178 89 44 22 11 5 2 1 0

• What if -714

• -357 -178 -89 . . . -3 -2 -1 -1 -1 -1

17

Examples

Boolean expressions

• False is 0, any thing else is 1

Limits

• The file limits.h provides some constants
• char- CHAR_BIT, CHAR_MIN,
CHAR_MAX, SCHAR_MIN, …

• int INT_MIN, INT_MAX, UINT_MAX

• long LONG_MIN, …

• You can find FLOAT_MIN, DOUBLE_MIN,
… in <float.h>

18

Conditional experssions

• Test? exper-true:expe-false

• z=(a>b)? a:b

Control Flow

• if, while, do while

• The execution of the program depends on
some conditions

• Similar to Java

Control Flow

• if (expression)

• statement

• else

• statement

• else is optional

• What is statement?

; // null statement

x=a+b;

{

…….

}

{
…

{
…….

}
}

19

Control Flow

• if (expression)

• statement1;

• else if (expression)

• statement2;

• else if (expression)

• statement3;

• else
• statement4;

• if (expression)

• statement1;

• if (expression)

• statement2;

• else
• statement4;

While

• while (expression)

• statement

• do
• statement

• while(expression)

For

• for(i=0, j=3; i<10 && k>2; i++,j--)

• statement

• for(;;)

20

Break and Continue

• Break – exits the innermost loop

• Continue – skips the current iteration and
starts the next one

Switch

• switch(x) {

• case 0 : …………

• break;

• case 1 : ……….

• break;

• }

Unique cases, no duplication

Switch (expression) not allowed

Streams and Files

• Stream: any source of input or any
destination for output.

• Files, but could be also devices such as
printers or network ports.

• Accessing streams is done via file pointer
that is of type FILE *.

• Standard streams stdin, stdout,
stderr.

21

Files

• You must open the file before you read or
write to it (what about stdin, …).

• The system checks the file, and returns a
small non-negative integer known as file
descriptor, all reads and writes are
through this file descriptor.

• 0,1,2 are reserved for stdin, stdout, and
stderr.

Files
• FILE *fp1;

• FILE *fopen(char *name, char *mode)

• fp1=fopen(name, mode);

• Do not assume file will open, always
check for a null pointer.

• Name is a character string containing the
name of the file, mode is a character string
to indicate how the file will be used

• Mode could be “r”, “w”, “a”, “r+”,

Files

• To read or write characters from a file
• int fgetc(FILE *fp);

• Returns a byte from a file, or EOF if it
encountered the end of file

• int fputc(int c, FILE *fp);

• Writes the character c to the file (where to
write it?)

• Be aware of “\” in the file name it might be
treated as escape char. use “/”, or “\” ”\”

22

opening a file

FILE *fp

fp = fopen(“name”, “r”);

if(fp == NULL) {printf (…); exit }

• …..

• OR
if((fp=fopen(NAME,”r”) == NULL)
{..}

Character I/O

• putchar(ch) writes one char to stdout

• fputc(ch, fp) writes ch to fp (same for putc)

• putc is usually implemented as a macro or
function, fputc is a function.

• putchasr is defined as

• #define putchar(c) putc((c, stdout)

• If error, return EOF

Character I/O

• int fgetc(FILE *);

• int getc(FILE *);

• int getchar(void); /* from stdin */

• int ungetc(int c, FILE *fp);

• Read char is unsigned char converted to
int (must be int for EOF to work properly).

while((ch = getc(fp)) != EOF {

bla bla bla

}

23

Line I/O

• int fputs(const char * s, FILE *fp);

• int puts(const char * s);

• puts adds a newline char after s, fputs
doesn’t.

• Both return EOF in case of error

Line I/O

char *fgets(char * s, int n, FILE *fp);

char *gets(char * s);

• gets reads character till a new line (discards)

• fgets reads characters til a newline or n-1
characters. if newline is read, it is added to
the string.

Block I/O

size_t fread(void * ptr, size_t
size, size_t nmemb, FILE *fp);

size_t fwrite(void * ptr, size_t
size, size_t nmemb, FILE *fp);

• return the actual number of elements
read/written.

24

Position in Files

• int fseek(FILE *stream, long offset, int whence);
• The fseek() function shall set the file-position indicator

for the stream pointed to by stream. If a read or write
error occurs, the error indicator for the stream shall be
set and fseek() fails.

• The new position, measured in bytes from the beginning
of the file, shall be obtained by adding offset to the
position specified by whence. The specified point is the
beginning of the file for SEEK_SET, the current value of
the file-position indicator for SEEK_CUR, or end-of-file
for SEEK_END.

Position in File

• some problems when dealing with text
files.

• See example in the lecture.

Formatted I/O

• we can use fprintf and fscanf with the first
parameter a file pointer.

• Error?

25

Formatted I/O

• for scanf and fscanf, error may be
• End-of-file feof(fp) returns a non-zero

value
• Read error ferror(fp) returns a non-

zero value

• A matching error, neither of the above two
indicators returns a non-zero.

