

Letter of Transmittal

EECS 3215 Project report: An interlinking embedded system with social media. This report was written on Monday,

April 18, 2016.

This report shows how the interlinking embedded system with social media was achieved. Also, this report

demonstrates the organization of the hardware/software of this embedded system, as well as how it works.

If you have any further questions, please do not hesitate to contact me at this email address:

taidnt92@my.yorku.ca.

Sincerely,

Tai Dinh

Department of Electrical Engineering
 and Computer Science

EECS 3215

EMBEDDED SYSTEMS

2015-2016 Winter Term

Project Report

Amanpreet Singh Walia 212938734

Juan Gabriel Loja 212786406

Tai Dinh 212501821

 Due Date: Tuesday, April 20, 2016

The work in this report is our own. We have read and understood York University’s academic dishonesty policy and
we did not violate the senate dishonesty policy in writing this report.

Signature

THE NOTIFIER

Executive Summary

This project report contains detailed description of our project with all the hardware and software

components involved. This involves setup procedure, connections, software intricacies and the respective code

involved. Our project is related to connecting Embedded systems with social media web to utilize the benefits

of internet connected world as much as possible. For this particular project, we use Facebook and Gmail as

the social media platform for showing the proof of concept. However, it can be extended suitably to nearly

all other existing platforms. On Embedded systems side we chose Raspberry pi 2 running Raspbian OS as the

device of our choice. For user interface we use 16X2 LCD and Wi-Fi module to achieve the task. All necessary

information related to project is available in detailed format across the report.

Acknowledgements

Working on this project was a source of immense knowledge to us. We would like to express our sincere,

grateful gratitude to our instructor and teaching assistants for their guidance and valuable support in this

project. This project cannot be completed without the effort and co-operation from our group members. We

would also like to thank our parents for their love and support.

Amanpreet Walia

Juan Gabriel Loja

Tai Dinh

Introduction

Today Social media connects nearly 2 billion people online through various platforms like Email & Social media

messages and notifications (Twitter, Facebook, Gmail etc.). This generates a lot of useful data from our day

to day lives which can be used to modernize our life in a better way. With this project we connected the realms

of social media with embedded systems. Our present project offers a proof of concept that with IOT (Internet

of Things) going popular we can connect very small embedded devices used in our day to day lives to social

media through internet. This offers us smart devices which can use data generated by users on various web

platforms to perform meaningful and intelligent tasks. For example, we can easily monitor the heart rate and

blood pressure using various embedded devices but this information is limited to the patient itself. However,

with these devices connected to social media we can have smart medical devices which can inform nearest

medical authority in case of any emergency by fetching location data through social media. This task can be

easily done using a social media platform.

 For this particular project we have demonstrated that how communication is possible between an embedded

device and social media. Our project utilizes raspberry pi which receives updates from

Facebook/Twitter/Gmail based on notifications, messages and friend requests. The updates could be

displayed on LCD module, as well indicated by a multi colored LED. This embedded system design includes the

following components: Raspberry Pi 2 board, Wi-Fi module, LCD module, LEDs, Breadboard, female - male

wires. This report presents the hardware with all schematics and explanation of design, as well as software

with all program source and explanations.

Hardware Components and Schematics

Raspberry Pi

Raspberry Pi 2 Pin Diagram

The Raspberry Pi 2 Model B is the second generation Raspberry Pi. It contains:

• A 900MHz quad-core ARM Cortex-A7 CPU

• 1GB RAM

• 4 USB ports

• 40 GPIO pins

• Full HDMI port

• Ethernet port

• Combined 3.5mm audio jack and composite video

• Camera interface (CSI)

• Display interface (DSI)

• Micro SD card slot

• Video Core IV 3D graphics core

It has an ARMv7 processor which can run the full range of ARM GNU/Linux distributions, including Snappy

Ubuntu Core, as well as Microsoft Windows 10.

16x2 Liquid Crystal Display

LCD (Liquid Crystal Display) screen is an electronic display module and find a wide range of applications. A

16x2 LCD means it can display 16 characters per line and there are 2 such lines. In this LCD each character

is displayed in 5x7 pixel matrix. This LCD has two registers, namely, Command and Data. The command register

stores the command instructions given to the LCD. A command is an instruction given to LCD to do a predefined

task like initializing it, clearing its screen, setting the cursor position, controlling display etc. The data register

stores the data to be displayed on the LCD. The data is the ASCII value of the character to be displayed on

the LCD. Click to learn more about internal structure of a LCD.

 Pin
No

 Function Name

1 Ground (0V) Ground

2 Supply voltage; 5V (4.7V – 5.3V) Vcc

3 Contrast adjustment; through a variable resistor VEE

4
Selects command register when low; and data register
when high

Register
Select

5
Low to write to the register; High to read from the
register

Read/write

6
Sends data to data pins when a high to low pulse is
given

Enable

7

8-bit data pins

DB0

8 DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

15 Backlight VCC (5V) Led+

16 Backlight Ground (0V) Led-

 RGB LED

Diffused 5mm tri-color LED with separate red, green and blue LED chips inside! Nice indicator, and fun to

color-swirl. 60 degree viewing angle. We like diffused RGB LEDs because they color mix inside instead of

appearing as 3 distinct LEDs.

These are Common-Anode type which means you connect one pin to 5V or so and then tie the other three

legs to ground through a resistor. We carry and use CA more than CC because multi-LED driver chips (such

as the TLC5940/TLC5941) are often designed exclusively for CA and can't be used with Common-Cathode.

 5mm diameter

 Red: 630 nm wavelength, Green: 525 nm, Blue: 430 nm

 Red: 2.1-2.5V Forward Voltage, at 20mA current, Green: 3.8-4.5V, Blue: 3.8-4.5V

 Red: 500 mcd typical brightness, Green: 600 mcd, Blue: 300 mcd

Raspberry Pi USB Wi-Fi Dongle

This device is used to connect to Wi-Fi network through USB protocol and onboard drivers. The USB Network

Card has a launching function which can launch Wi-Fi signal to your phone under the premise of your computer

getting online.

System Schematics

Details of the schematics and design:

Raspberry pi 2 is powered using standard micro USB charger used to charge mobile devices which provide

constant 5V output. Typically, the model B uses between 700-1000mA depending on what peripherals are

connected; The maximum power the Raspberry Pi can use is 1 Amp. It is running on Raspbian OS which is a

deviant of Debain Wheezy Linux Distribution. It has a standard microSD card with 16 GB of storage.

Connections

We did all our connections using standard breadboard.

RGB Led is driven using GPIO (General Purpose Input-Output) 2, GPIO 3, GPIO 4 ports for Red, Green and

Blue shades. Since we need to show different colors for different type of notifications, three different ports

are chosen. These ports are driven to low (~0V) or high (~ 5V) depending on the software command.

LCD devices usually require 8 data lines to provide data to Bits 0-7. However, the device can be set to a “4

bit” mode which allows you to send data in two chunks (or nibbles) of 4 bits. This is great as it reduces the

number of GPIO connections when interfacing with Pi.

Here is how LCD is wired:

LCD Pin Function Pi Function Pi Pin

01 GND GND P1-06

02 +5V +5V P1-02

03 Contrast GND P1-06

04 RS GPIO7 P1-26

05 RW GND P1-06

06 E GPIO8 P1-24

07 Data 0

08 Data 1

09 Data 2

10 Data 3

11 Data 4 GPIO25 P1-22

12 Data 5 GPIO24 P1-18

13 Data 6 GPIO23 P1-16

14 Data 7 GPIO18 P1-12

15 +5V via 560ohm

16 GND P1-06

In order to control the contrast, we can adjust the voltage presented to Pin 3. This must be between 0 and

5V. Pin 15 provides 5V to the backlight LED. It wasn’t clear on this device if this could be connected direct to

5V so I played safe and placed a 560ohm resistor in line with this pin.

Software Design:

Main System Code Details:

Modules Imported

The following modules are imported from standard python. Some modules like os, time, urllib2,

socket, struct, thread are available with standard python installation while modules like facebook,

gmail, RPi.GPIO have to be installed externally. For LCD the lcd_module is written by ourselves and used

externally to improve abstraction of the code.

import os

import time

import urllib2

import socket

import fcntl

import struct

import facebook

import gmail

from lcd_module import *

import RPi.GPIO as GPIO

import thread

LED Control Paradigm
We are making color defined functions to drive the RGB LED to different colors as shown below:

This is done in a separate thread to provide modularity to the system.

Gmail Notification Access

We defined a separate class to retrieve notifications of new email. We pass authorization parameters to the

object of this class to gain access to our account to retrieve email notifications.

def RED():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,0)

def BLUE():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,0)

def GREEN():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,1)

def CYAN():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,1)

def PURPLE():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,1)

def YELLOW():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,0)

def WHITE():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,1)

def OFF():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,0)

class MyGmailObject():

 def __init__(self, gmail_username, gmail_password , gmail_access_token):

 #authenticate and login

 gmail.authenticate(gmail_username, gmail_access_token)

 self.mailObject = gmail.login(gmail_username,gmail_password)

Facebook Notification Access

Facebook Notifications are fetched using graph API provided by Facebook. User has to pass an access token

from his account and pass on this to the object of graph API. This object is then used to access notifications of

that particular user. The following methods are just implementations of this procedure.

Our system first scans for internet connectivity to see if it is possible to connect to Facebook and Gmail servers.

On successful internet connection it checks for login file in file system. If login credentials are missing or illegal,

it waits till correct credentials are put in. On retrieving the correct credentials, it connects to the respective

servers and fetch the notifications to display on LCD screen in separate lines.

Open Authorization System

We take security of the user credentials very seriously therefore the user credentials are not stored within the

program but in a separate file. This functionality also adds extensibility of users as we can easily modify the

login credentials to change user on the system.

def get_latest_email(self):

 allMessages = self.mailObject.inbox().mail()

 allMessages[len(allMessages)-1].fetch()

 return allMessages[len(allMessages)-1]

 def get_latest_sender(self):

 latestMessage = self.get_latest_email()

 return latestMessage.fr

 def get_latest_subject(self):

 latestMessage = self.get_latest_email()

 return latestMessage.subject

 def get_latest_body(self):

 latestMessage = self.get_latest_email()

 return latestMessage.body

 def get_num_unread_messages(self):

 allMessages = self.mailObject.inbox().mail(unread = True)

 return len(allMessages)

 def close_my_mail(self):

 self.mailObject.logout()

graph = facebook.GraphAPI(fb_token)

notifications = graph.get_object("me/notifications")

def getLatestNotificationFrom(notificationsNode):

 try:

 key = 'data'

 if key in notificationsNode:

 latestNotification = notificationsNode[key][0]

 return latestNotification['title']

 except:

 return 'NO NEW NOTIFICATIONS'

oAuthorisation is an executable file attached to our OS to give safe credential input functionality. We can SSH

into Raspberry Pi using any normal Computer System on local network and input the requisite parameters.

These credentials are stored in encrypted format in hidden file in our file system so that nobody can have

access to sensitive data. This functionality also ensures that user has to input the credentials only one time.

Rest of the Details are provided in the code in reference section for any reference.

Conclusion

The interlinking embedded system with social media and personal email has been successfully accomplished

in our project. We are successfully able to connect the embedded world with social world which can provide

many future applications and provides a stepping stone in field of IOT. Our project demonstrated this

functionality using very basic components like raspberry pi 2 and LCD module to display the any latest

updates from Facebook, Twitter and Gmail of specific user. This project gave us a valuable opportunity to

apply the concepts we learnt in the lectures and labs. This helped us better reflect what we have learnt in

this course.

Sources

http://www.raspberrypi-spy.co.uk/2012/07/16x2-lcd-module-control-using-python/

https://developers.google.com/gmail/api/quickstart/python

https://gist.github.com/pdp7/7359910

Appendices

The following is the main code that masters other code files in order to display the notification:

import os

import time

import urllib2

import socket

import fcntl

import struct

import facebook

import gmail

from lcd_module import *

import RPi.GPIO as GPIO

import thread

hasNOTIFICATION = False

pin_1 = 2 # GPIO pin 18 controlling LED

pin_2 = 3

pin_3 = 4

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(pin_1,GPIO.OUT)

GPIO.setup(pin_2,GPIO.OUT)

GPIO.setup(pin_3,GPIO.OUT)

def RED():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,0)

def BLUE():

http://www.raspberrypi-spy.co.uk/2012/07/16x2-lcd-module-control-using-python/
https://developers.google.com/gmail/api/quickstart/python
https://gist.github.com/pdp7/7359910

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,0)

def GREEN():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,1)

def CYAN():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,1)

def PURPLE():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,1)

def YELLOW():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,0)

def WHITE():

 GPIO.output(pin_1,1)

 GPIO.output(pin_2,1)

 GPIO.output(pin_3,1)

def OFF():

 GPIO.output(pin_1,0)

 GPIO.output(pin_2,0)

 GPIO.output(pin_3,0)

def turn_LEDS():

 while True:

 if hasNOTIFICATION:

 RED();

 time.sleep(0.05)

 BLUE();

 time.sleep(0.05)

 GREEN();

 time.sleep(0.05)

 CYAN();

 time.sleep(0.05)

 PURPLE();

 time.sleep(0.05)

 YELLOW();

 time.sleep(0.05)

 WHITE();

 time.sleep(0.05)

class MyGmailObject():

 def __init__(self, gmail_username, gmail_password , gmail_access_token):

 #authenticate and login

 gmail.authenticate(gmail_username, gmail_access_token)

 self.mailObject = gmail.login(gmail_username,gmail_password)

 def get_latest_email(self):

 allMessages = self.mailObject.inbox().mail()

 allMessages[len(allMessages)-1].fetch()

 return allMessages[len(allMessages)-1]

 def get_latest_sender(self):

 latestMessage = self.get_latest_email()

 return latestMessage.fr

 def get_latest_subject(self):

 latestMessage = self.get_latest_email()

 return latestMessage.subject

 def get_latest_body(self):

 latestMessage = self.get_latest_email()

 return latestMessage.body

 def get_num_unread_messages(self):

 allMessages = self.mailObject.inbox().mail(unread = True)

 return len(allMessages)

 def close_my_mail(self):

 self.mailObject.logout()

def get_ip_address(ifname):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 return socket.inet_ntoa(fcntl.ioctl(

 s.fileno(),

 0x8915, # SIOCGIFADDR

 struct.pack('256s', ifname[:15])

)[20:24])

def getLatestNotificationFrom(notificationsNode):

 try:

 key = 'data'

 if key in notificationsNode:

 latestNotification = notificationsNode[key][0]

 return latestNotification['title']

 except:

 return 'NO NEW NOTIFICATIONS'

def lcd_string_print(string,line,length):

 for x in range(0, len(string)-length):

 lcd_string(string[x:x+length],line)

 print string[x:x+length]

 time.sleep(0.45)

def en_decrypt_char(KEY, val):

 if (val > 31 and val < 127):

 return ((val - 32) + (2 * 95) + KEY)%95 + 32

 else:

 return val

def en_decrypt_string(KEY, str_s):

 modified_str = []

 for i in range(len(str_s)):

 c = chr(en_decrypt_char(KEY, ord(str_s[i])))

 modified_str.append(c)

 modified_str = "".join(modified_str)

 return modified_str

s = get_ip_address('wlan0')

authentication = False

displayNotifications = False

while not displayNotifications:

 try:

 urllib2.urlopen("http://www.google.com").close()

 except urllib2.URLError:

 print "Not Connected"

 time.sleep(1)

 else:

 print("Connected")

 while (not authentication):

 OFF()

 hasNOTIFICATION = False

 lcd_string("IP ADDRESS",LCD_LINE_1)

 lcd_string(s,LCD_LINE_2)

 time.sleep(2)

 #os.system('clear')

 lcd_string("Connect Facebook",LCD_LINE_1)

 lcd_string("&Gmail account",LCD_LINE_2)

 time.sleep(2)

 lcd_init()

 lcd_string("SSH to Device",LCD_LINE_1)

 lcd_string("Run oAuthorise",LCD_LINE_2)

 time.sleep(2)

 try:

 if os.stat("/home/pi/.login_notifier").st_size > 0:

 login_file = open("/home/pi/.login_notifier",'r')

 fb_token = login_file.readline()

 fb_token = fb_token.rstrip('\n')

 fb_token = en_decrypt_string(-10, fb_token)

 print fb_token

 gmail_username = login_file.readline()

 gmail_username = gmail_username.rstrip('\n')

 gmail_username = en_decrypt_string(-10, gmail_username)

 print gmail_username

 gmail_passwd = login_file.readline()

 gmail_passwd = gmail_passwd.rstrip('\n')

 gmail_passwd = en_decrypt_string(-10, gmail_passwd)

 print gmail_passwd

 gmail_access_token = login_file.readline()

 gmail_access_token = gmail_access_token.rstrip('\n')

 gmail_access_token = en_decrypt_string(-10, gmail_access_token)

 print gmail_access_token

 try:

 graph = facebook.GraphAPI(fb_token)

 notifications = graph.get_object("me/notifications")

 myMail = MyGmailObject(gmail_username, gmail_passwd ,

gmail_access_token)

 myMail.get_latest_sender()

 myMail.get_latest_subject()

 authentication = True

 displayNotifications = True

 except:

 print "Unsuccessful Login attempt"

 authentication = False

 displayNotifications = False

 else:

 print "empty file"

 except OSError:

 print ""

 time.sleep(2)

try:

 thread.start_new_thread(turn_LEDS, ())

except:

 print 'unable to start thread'

lcd_init()

while displayNotifications :

 hasNOTIFICATION = True

 notifications = graph.get_object("me/notifications")

 s = getLatestNotificationFrom(notifications)

 t = myMail.get_latest_sender()

 lcd_string_print(s,LCD_LINE_1,16)

 myMail = MyGmailObject(gmail_username, gmail_passwd , gmail_access_token)

 u = myMail.get_latest_subject()

 print u

 t = myMail.get_latest_sender()

 lcd_string_print("from: " + t.split('<')[0] +"Subject: " + u + " ",LCD_LINE_2,16)

 #os.system('clear')

The following is Authorize.....

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int Key = 10;

int encrypt_decript_char(int KEY, char character_data)

{

 int data;

 if (character_data>31 && character_data<127)

 {

 data = (((int)character_data - 32) + 2 * 95 + KEY) % 95 + 32;

 }

 else

 {

 data = character_data;

 }

 return data;

}

void encode_decode_string(int KEY, char* str)

{

 int i = 0;

 for (i = 0; i < strlen(str); i++)

 {

 str[i] = (char)encrypt_decript_char(KEY, str[i]);

 }

 str[i] = 0;

}

int main()

{

 char fb_token[300];

 char gmail_username[65];

 char gmail_password[100];

 char gmail_access_token[300];

 printf("***************Welcome to Open Authorisation System***************\n");

 printf("Enter your Facebook Login Token for access to your account\n");

 printf("For help look @ http://www.slickremix.com/facebook-60-day-user-access-

token-generator \n");

 //FILE *fp = fopen("/home/aman/.login_notifier", "w");

 FILE *fp = fopen(".login_notifier", "w");

 if (fp < 0)

 {

 printf("Some problem with System ,Retry Again after some time!!!");

 exit(0);

 }

 printf("Facebook Access Token : ");

 if (fgets(fb_token, 256, stdin)<0)

 {

 printf("Some problem with System ,Retry Again after some time!!!");

 exit(0);

 }

 printf("Enter your Gmail Login Credentials for access to your account\n");

 printf("For help look @

https://developers.google.com/gmail/oauth_protocol#constructing_the_oauth_protocol_pa

rameters\n");

 printf("Gmail Username : ");

 if (fgets(gmail_username, 65, stdin)<0)

 {

 printf("Some problem with System ,Retry Again after some time!!!");

 exit(0);

 }

 printf("Gmail Password : ");

 if (fgets(gmail_password, 100, stdin)<0)

 {

 printf("Some problem with System ,Retry Again after some time!!!");

 exit(0);

 }

 printf("Gmail Access Token : ");

 if (fgets(gmail_access_token, 256, stdin)<0)

 {

 printf("Some problem with System ,Retry Again after some time!!!");

 exit(0);

 }

 encode_decode_string(Key, fb_token);

 encode_decode_string(Key, gmail_username);

 encode_decode_string(Key, gmail_password);

 encode_decode_string(Key, gmail_access_token);

 fputs(fb_token, fp);

 fputs(gmail_username, fp);

 fputs(gmail_password, fp);

 fputs(gmail_access_token, fp);

 fclose(fp);

 return 0;

}

The following is LCD code:

#!/usr/bin/python

The wiring for the LCD is as follows:

1 : GND

2 : 5V

3 : Contrast (0-5V)*

4 : RS (Register Select)

5 : R/W (Read Write) - GROUND THIS PIN

6 : Enable or Strobe

7 : Data Bit 0 - NOT USED

8 : Data Bit 1 - NOT USED

9 : Data Bit 2 - NOT USED

10: Data Bit 3 - NOT USED

11: Data Bit 4

12: Data Bit 5

13: Data Bit 6

14: Data Bit 7

15: LCD Backlight +5V**

16: LCD Backlight GND

import RPi.GPIO as GPIO

import time

import sys

Define GPIO to LCD mapping

LCD_RS = 7

LCD_E = 8

LCD_D4 = 25

LCD_D5 = 24

LCD_D6 = 23

LCD_D7 = 18

Define some device constants

LCD_WIDTH = 16 # Maximum characters per line

LCD_CHR = True

LCD_CMD = False

LCD_LINE_1 = 0x80 # LCD RAM address for the 1st line

LCD_LINE_2 = 0xC0 # LCD RAM address for the 2nd line

Timing constants

E_PULSE = 0.0005

E_DELAY = 0.0005

def lcd_init():

 # Initialise display

 lcd_byte(0x33,LCD_CMD) # 110011 Initialise

 lcd_byte(0x32,LCD_CMD) # 110010 Initialise

 lcd_byte(0x06,LCD_CMD) # 000110 Cursor move direction

 lcd_byte(0x0C,LCD_CMD) # 001100 Display On,Cursor Off, Blink Off

 lcd_byte(0x28,LCD_CMD) # 101000 Data length, number of lines, font size

 lcd_byte(0x01,LCD_CMD) # 000001 Clear display

 time.sleep(E_DELAY)

def lcd_toggle_enable():

 # Toggle enable

 time.sleep(E_DELAY)

 GPIO.output(LCD_E, True)

 time.sleep(E_PULSE)

 GPIO.output(LCD_E, False)

 time.sleep(E_DELAY)

def lcd_byte(bits, mode):

 # Send byte to data pins

 # bits = data

 # mode = True for character

 # False for command

 GPIO.output(LCD_RS, mode) # RS

 # High bits

 GPIO.output(LCD_D4, False)

 GPIO.output(LCD_D5, False)

 GPIO.output(LCD_D6, False)

 GPIO.output(LCD_D7, False)

 if bits&0x10==0x10:

 GPIO.output(LCD_D4, True)

 if bits&0x20==0x20:

 GPIO.output(LCD_D5, True)

 if bits&0x40==0x40:

 GPIO.output(LCD_D6, True)

 if bits&0x80==0x80:

 GPIO.output(LCD_D7, True)

 # Toggle 'Enable' pin

 lcd_toggle_enable()

 # Low bits

 GPIO.output(LCD_D4, False)

 GPIO.output(LCD_D5, False)

 GPIO.output(LCD_D6, False)

 GPIO.output(LCD_D7, False)

 if bits&0x01==0x01:

 GPIO.output(LCD_D4, True)

 if bits&0x02==0x02:

 GPIO.output(LCD_D5, True)

 if bits&0x04==0x04:

 GPIO.output(LCD_D6, True)

 if bits&0x08==0x08:

 GPIO.output(LCD_D7, True)

 # Toggle 'Enable' pin

 lcd_toggle_enable()

def lcd_byte(bits, mode):

 # Send byte to data pins

 # bits = data

 # mode = True for character

 # False for command

 GPIO.output(LCD_RS, mode) # RS

 # High bits

 GPIO.output(LCD_D4, False)

 GPIO.output(LCD_D5, False)

 GPIO.output(LCD_D6, False)

 GPIO.output(LCD_D7, False)

 if bits&0x10==0x10:

 GPIO.output(LCD_D4, True)

 if bits&0x20==0x20:

 GPIO.output(LCD_D5, True)

 if bits&0x40==0x40:

 GPIO.output(LCD_D6, True)

 if bits&0x80==0x80:

 GPIO.output(LCD_D7, True)

 # Toggle 'Enable' pin

 lcd_toggle_enable()

 # Low bits

 GPIO.output(LCD_D4, False)

 GPIO.output(LCD_D5, False)

 GPIO.output(LCD_D6, False)

 GPIO.output(LCD_D7, False)

 if bits&0x01==0x01:

 GPIO.output(LCD_D4, True)

 if bits&0x02==0x02:

 GPIO.output(LCD_D5, True)

 if bits&0x04==0x04:

 GPIO.output(LCD_D6, True)

 if bits&0x08==0x08:

 GPIO.output(LCD_D7, True)

 # Toggle 'Enable' pin

 lcd_toggle_enable()

def lcd_string(message,line):

 # Send string to display

 message = message.ljust(LCD_WIDTH," ")

 lcd_byte(line, LCD_CMD)

 for i in range(LCD_WIDTH):

 lcd_byte(ord(message[i]),LCD_CHR)

'''

def lcd_string_print(string,line,length):

 for x in range(0, len(string)-length):

 lcd_string(string[x:x+length],line)

 time.sleep(0.5)

'''

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BCM) # Use BCM GPIO numbers

GPIO.setup(LCD_E, GPIO.OUT) # E

GPIO.setup(LCD_RS, GPIO.OUT) # RS

GPIO.setup(LCD_D4, GPIO.OUT) # DB4

GPIO.setup(LCD_D5, GPIO.OUT) # DB5

GPIO.setup(LCD_D6, GPIO.OUT) # DB6

GPIO.setup(LCD_D7, GPIO.OUT) # DB7

Initialise display

lcd_init()

