
Java PathFinder: a tool to detect bugs in Java code

Franck van Breugel

January 12, 2016

c©2016 Franck van Breugel

2

Abstract

It is well known that software contains bugs. Since Java is among the most popular programming languages, it is
essential to have tools that can detect bugs in Java code. Although testing is the most used technique to detect bugs, it
has its limitations, especially for nondeterministic code. Concurrency and randomization are the two main sources of
nondeterminism. To find bugs in nondeterministic code, testing needs to be complemented with other techniques such
as model checking. Java PathFinder (JPF) is the most popular model checker for Java code. In this book, we describe
how to install, configure, run and extend JPF.

3

4

Preface

According to a 2002 study commissioned by the US Department of Commerce’s National Institute of Standards and
Technology, “estimates of the economic costs of faulty software in the US range in the tens of billions of dollars
per year and have been estimated to represent approximately just under one percent of the nation’s gross domestic
product.” Since software development has not changed drastically in the last decade, but the footprint of software
in our society has increased considerably, it seems reasonable to assume that this number has increased as well and
ranges in the hundreds of billions of dollars per year on a world wide scale. This was confirmed by a recent study
[BJC+13] which included that “wages-only estimated cost of debugging is US $312 billion per year.” Hence, tools to
detect bugs in software can impact the software industry and even the world economy. The topic of this book is such
a tool.

The TIOBE programming community index1, the transparent language popularity index2, the popularity of pro-
gramming language index3, the RedMonk programming language rankings4, and Trendy Skills5, all rank Java among
the most popular programming languages. Popularity of the language and impact of a tool to detect bugs of software
written in that language go hand in hand. Therefore, we focus on a popular language in this book, namely Java.

Testing is the most commonly used method to detect bugs. However, for nondeterministic code testing may be
less effective. Code is called nondeterministic if it gives rise to different executions even when all input to the code is
fixed. Randomization and concurrency both give rise to nondeterminism. To illustrate the limitations of testing when
it comes to nondeterministic code, let us concentrate on the former.

Consider the following Java application.

1 import java.util.Random;
2

3 public class Example {
4 public static void main(String[] args) {
5 Random random = new Random();
6 System.out.print(random.nextInt(10));
7 }
8 }

The above application may result in ten different executions, since it prints a randomly chosen integer in the interval
[0, 9]. Now, let us replace line 6 with

System.out.print(1 / random.nextInt(9));

In 80% of the cases, the application prints zero, in 10% it prints one, and in the remaining 10% it crashes because of
an uncaught exception due to a division by zero. Of course, it may take more than ten executions before we encounter
the exception. In case we choose an integer in the interval [0, 99999] it may take many executions before encountering
the exception. If we execute the application one million times, there is still a 36% chance that we do not encounter the

1www.tiobe.com
2lang-index.sourceforge.net
3http://pypl.github.io/PYPL.html
4redmonk.com/sogrady/2013/02/28/language-rankings-1-13
5trendyskills.com

5

http://www.tiobe.com
http://lang-index.sourceforge.net
http://pypl.github.io/PYPL.html
http://redmonk.com/sogrady/2013/02/28/language-rankings-1-13
http://trendyskills.com

system under test JPF

configuration files

reports

Figure 1: Overview of JPF.

exception.6

In the presence of nondeterminism, testing does not guarantee that all different executions are checked. Further-
more, if a test detects a bug in nondeterministic code, it may be difficult to reproduce. Therefore, in that case methods
which complement testing are needed. Model checking is such an alternative. It aims to check all potential executions
of nondeterministic code in a systematic way.

We will not discuss model checking in much detail. Instead, we refer the interested reader to textbooks such as
[BK08], [CGP01] and [BBF+01]. In this book, we introduce the reader to a model checker, a tool that implements
model checking. In particular, we focus on a model checker for Java.

Although there are several model checkers for Java, including Bandera [CDH+00] and Bogor [RDH03] to name
a few, Java PathFinder (JPF) is the most popular one. Its popularity is reflected by several statistics. For example,
the conference paper [VHBP00] and its extended journal version [VHB+03] have been cited more than 1200 times
according to Google scholar, making it the most cited work on a Java model checker. In this book, we focus on JPF.
Although JPF can do much more than detect bugs, we concentrate on that functionality.

Overview of JPF
In Figure 1 we provide a high level overview of JPF. It takes as input a system under test and configuration files and
produces reports as output. The system under test is the application, a Java class with a main method, we want to
check for bugs. JPF not only checks that main method but also all other code that is used by that main method. JPF
can only check a closed system. That is, a system for which all input is provided, be it obtained from the keyboard, the
mouse, a file, a URL, etcetera. Handling such input can be far from trivial and we will come back to this in Chapter ??.

JPF can be configured in two different ways: by command line arguments or in configuration files. We will
concentrate on the second option. There are three different types of configuration file. We will discuss them in
Chapter .

The reports that JPF produces can take different forms. For example, a report can be written to the console or to a
file, and it can be text or XML. In the configuration files one can specify what type of reports should be produced by
JPF. We will discuss this in more detail in Chapter ??.

Overview of the Book
This book has been written for both students and developers who are interested in tools that can help them with
detecting bugs in their Java code. In Chapter 1 we discuss how to install JPF. How to run JPF is the topic of Chapter 2.
In Chapter we focus on the configuration of JPF.

6The probability of choosing zero is 1
1000000

. The probability of not choosing zero is 1− 1
1000000

= 99999
1000000

. The probability of not choosing
zero one million times in a row is (99999

1000000
)1000000 ≈ 0.36.

6

Chapter 1

Installing JPF

As we have already discussed in the preface, JPF is a tool to detect bugs in Java code. Since the reader is interested
in JPF, we feel that it is safe to assume that the reader is familiar with Java and has installed the Java development kit
(JDK). The JDK should be at least version 8.

JPF can be installed in several different ways on a variey of operating systems. A road map for Section 1.2–1.10
can be found in Figure 1.1. In Section 1.1, we start with the simplest way to install JPF: just install the JPF binaries.
This approach is ideal if one just wants to try JPF. In Section 1.2, we describe how to install the JPF sources. The main
advantage of this second approach over the first approach is that one can easily make changes to JPF.

However, since changes are made to JPF almost every week, it is better to obtain its souces from JPF’s Mercurial
repository if one wants to use JPF regularly. Mercurial is a version control system. Information about Mercurial,
including instructions how to install Mercurial, can be found at mercurial.selenic.com. We describe three different
ways to install (and update) the sources of JPF’s Mercurial repository: au naturel, within Eclipse, and within NetBeans,
in Section 1.3 (and 1.4), 1.5 (and 1.6), and 1.8 (and 1.9), respectively. For those using Eclipse or NetBeans, the latter
two options are more convenient. Also, there are JPF plugins for Eclipse or NetBeans. How to install those is discussed
in Section 1.7 and 1.10, respectively. How to use these plugins to run JPF is discussed in Chapter 2.

As we already mentioned in the preface, JPF is easily extensible. Therefore, it should come as no surprise that
there are numerous extensions of JPF. In Section 1.11 we will discuss how to install such an extension.

1.1 Installing Binaries
To install the JPF binaries, follow the seven steps below.

1. Create a directory1 named jpf.

2. From the URL babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-core/ download the latest binary snap-
shot. The file is named jpf-core-rdddd.zip, where dddd are four digits. Save this file in the jpf directory.

3. Extract all files from the zip file jpf-core-rdddd.zip into a subdirectory of jpf named jpf-core.

4. Set the user environment variable JAVA_HOME as described in Section 1.1.1.

5. Set the user environment variable JPF_HOME to the path of jpf-core. For example, if the jpf direc-
tory, created in step 1, has path /cs/home/franck/projects/jpf, then the path of jpf-core is
/cs/home/franck/projects/jpf/jpf-core. Similarly, if the jpf directory has path C:\Users\
franck\projects\jpf, then the path of jpf-core is C:\Users\franck\projects\jpf\jpf-core.

6. Add the path of the jpf command to the system environment variable PATH as described in Section 1.1.2.

7. Create the site.properties file as described in Section 1.1.3.
1Directories are also known as folders.

7

http://mercurial.selenic.com
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-core/

Plan to use JPF regularly?

Plan to update JPF regularly?

Use Eclipse?

Use NetBeans?

Read Section 1.1

Read Section 1.2

Read Section 1.3–1.4

Read Section 1.5–1.7

Read Section 1.8–1.10

yes no

yes no

yesno

yes no

Figure 1.1: Road map for Section 1.2–1.10.

Once the above steps have been successfully completed, the reader can move on to Chapter 2 and run JPF.

1.1.1 Setting User Environment Variable JAVA_HOME
Linux

1. Locate the directory of the JDK. Unless the install path for the JDK was changed during installation, it will
be a subdirectory of /usr/java. Inside that directory will be one or more subdirectories whose name starts
with jdk, such as jdk1.8.0_51. Choose the latest version. For example, if the directory contains both
jdk1.6.0_37 and jdk1.8.0_51, then the JDK install path is /usr/java/jdk1.8.0_51.

2. Set the user environment variable named JAVA_HOME to the directory of the JDK by using the set or setenv
command in a startup script. For more details, do a web search for how to set an environment variable in Linux.

Windows

1. Locate the directory of the JDK. Unless the install path for the JDK was changed during installation, it will be a
subdirectory of C:\Program Files\Java. Inside that directory will be one or more subdirectories whose
name starts with jdk, such as jdk1.8.0_51. Choose the latest version. For example, if the directory con-
tains both jdk1.6.0_37 and jdk1.8.0_51, then the JDK install path is C:\Program Files\Java\
jdk1.8.0_51.

2. Set the user environment variable named JAVA_HOME to the directory of the JDK. For more details, do a web
search for how to set an environment variable in Windows.

OS X

1. Locate the directory of the JDK. Unless the install path for the JDK was changed during installation, it will be
a subdirectory of /Library/Java/JavaVirtualMachines. Inside that directory will be one or more

8

http://www.google.com/search?q=how+to+set+an+environment+variable+in+Linux
http://www.google.com/search?q=how+to+set+an+environment+variable+in+Windows

subdirectories whose name ends with jdk, such as jdk1.8.0_06.jdk. Choose the latest version. For
example, if the directory contains both jdk1.7.0_60.jdk and jdk1.8.0_06.jdk, then the JDK install
path is /Library/Java/JavaVirtualMachines/jdk1.8.0_06.jdk/Contents/Home.

2. Set the user environment variable named JAVA_HOME to the directory of the JDK. For more details, do a web
search for how to set an environment variable in OS X.

1.1.2 Adding to the System Environment Variable PATH
Linux

Add to the system environment variable named PATH the directory of the JDK by changing the set or setenv
command for PATH in a startup script. If the jpf directory has path /cs/home/franck/projects/jpf, then
add /cs/home/franck/projects/jpf/jpf-core/bin to the system environment variable PATH. For more
details, do a web search for how to change an environment variable in Linux.

Windows

In Windows, environment variables are not case sensitive. Hence, the system environment variable PATH can also
be named, for example, Path or path. If the jpf directory has path C:\Users\franck\projects\jpf,
then add C:\Users\franck\projects\jpf\jpf-core\bin to the system environment variable PATH. For
more details, do a web search for how to change an environment variable in Windows.

OS X

If the jpf directory has path /Users/franck/projects/jpf, then add /Users/franck/projects/jpf/
jpf-core/bin to the system environment variable PATH. For more details, do a web search for how to change an
environment variable in OS X.

1.1.3 Creating the site.properties File
1. Find the value of the standard Java system property user.home by running the following Java application.

public class PrintUserHome {
public static void main(String[] args) {
System.out.println("user.home = " + System.getProperty("user.home"));

}
}

2. Create a directory named .jpf within the directory user.home2.

3. Create in the directory user.home/.jpf a file named site.properties3. Assuming, for example, that
jpf-core is a subdirectory of user.home/projects/jpf, the file site.properties has the following
content.

JPF site configuration
jpf-core=${user.home}/projects/jpf/jpf-core
extensions=${jpf-core}

Next, we provide a few examples.
2To create a directory named .jpf in Windows Explorer, use .jpf. as its name. The dot at the end is necessary, and will be removed by

Windows Explorer.
3To create a file named site.properties in Window Explorer, configure Windows Explorer so that file extensions are visible, create a text

file named site.txt with the above content, and rename the file to site.properties. For more details, do a web search for how to change
a file extension in Windows.

9

http://www.google.com/search?q=how+to+set+an+environment+variable+in+OS+X
http://www.google.com/search?q=how+to+change+an+environment+variable+in+Linux
http://www.google.com/search?q=how+to+change+an+environment+variable+in+Windows
http://www.google.com/search?q=how+to+change+an+environment+variable+in+OS+X
http://www.google.com/search?q=how+to+change+an+environment+variable+in+OS+X
http://www.google.com/search?q=how+\ to+change+a+file+extension+in+Windows
http://www.google.com/search?q=how+\ to+change+a+file+extension+in+Windows

Linux

Assume that the jpf directory has path /cs/home/franck/projects/jpf and user.home is /cs/home/
franck. Then site.properties is located in the directory /cs/home/franck/.jpf and its content is

JPF site configuration
jpf-core=${user.home}/projects/jpf/jpf-core
extensions=${jpf-core}

If the jpf directory has path /cs/packages/jpf and user.home is /cs/home/franck, then site.properties
is located in the directory /cs/home/franck/.jpf and its content is

JPF site configuration
jpf-core=/cs/packages/jpf/jpf-core
extensions=${jpf-core}

Windows

Assume that the jpf directory has path C:\Users\franck\projects\jpf and user.home is C:\Users\
franck. Then site.properties is located in the directory C:\Users\franck\.jpf and its content is

JPF site configuration
jpf-core=${user.home}/projects/jpf/jpf-core
extensions=${jpf-core}

Note that we use / instead of \ in the path. If the jpf directory has path C:\Program Files\jpf and user.home
is C:\Users\franck, then site.properties is located in the directory C:\Users\franck\.jpf and its
content is

JPF site configuration
jpf-core=C:/Program Files/jpf/jpf-core
extensions=${jpf-core}

OS X

Assume that the jpf directory has path /Users/franck/projects/jpf and user.home is /Users/franck.
Then site.properties is located in the directory /Users/franck/.jpf and its content is

JPF site configuration
jpf-core=${user.home}/projects/jpf/jpf-core
extensions=${jpf-core}

If the jpf directory has path /System/Library/jpf and user.home is /Users/franck, then site.properties
is located in the directory /Users/franck/.jpf and its content is

JPF site configuration
jpf-core=/System/Library/jpf/jpf-core
extensions=${jpf-core}

1.2 Installing Sources
To install the JPF sources, follow the eight steps below.

1. Create a directory named jpf.

10

2. From the URL babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-core/ download the latest sources
snapshot. The file is named jpf-core-rdddd-src.zip, where dddd are four digits. Save this file in
the jpf directory.

3. Extract all files from the zip file jpf-core-rdddd-src.zip into a subdirectory of jpf named jpf-core.

4. Set the user environment variable JAVA_HOME as described in Section 1.1.1.

5. Run ant as described in Section 1.2.1.

6. Set the user environment variable JPF_HOME to the path of jpf-core. For example, if the jpf direc-
tory, created in step 1, has path /cs/home/franck/projects/jpf, then the path of jpf-core is
/cs/home/franck/projects/jpf/jpf-core. Similarly, if the jpf directory has path C:\Users\
franck\projects\jpf, then the path of jpf-core is C:\Users\franck\projects\jpf\jpf-core.

7. Add the path of the jpf command to the system environment variable PATH as described in Section 1.1.2.

8. Create the site.properties file as described in Section 1.1.3.

Once the above steps have been successfully completed, the reader can move on to Chapter 2 and run JPF.

1.2.1 Running Ant
Ant is a Java library and command-line tool that can be used to compile the JPF sources, test them, generate jar files,
etcetera. For more information about ant, we refer the reader to ant.apache.org.

Linux and OS X

In a shell, go to the subdirectory jpf-core of the created directory jpf. The directory jpf-core contains the file
build.xml. To run ant, type bin/ant test. This results in a lot of output, the beginning and end of which are
similar to the following.

Buildfile: /cs/home/franck/projects/jpf/jpf-core/build.xml

-cond-clean:

clean:

-init:
[mkdir] Created dir: /cs/home/franck/projects/jpf/jpf-core/build

...

[junit] Running gov.nasa.jpf.util.script.ScriptEnvironmentTest
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.04 sec

BUILD SUCCESSFUL
Total time: 3 minutes 31 seconds

Windows

In a command prompt, go to the subdirectory jpf-core of the created directory jpf. The directory jpf-core
contains the file build.xml. To run ant, type bin\ant test. This results in a lot of output, the beginning and
end of which are similar to the following.

11

http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-core/
http://ant.apache.org

Buildfile: C:\Users\franck\projects\jpf\jpf-core\build.xml

-cond clean:

clean:

-init:
[mkdir] Created dir: C:\Users\franck\projects\jpf\jpf-core\build

...

[junit] Running gov.nasa.jpf.util.script.ScriptEnvironmentTest
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.04 sec

BUILD SUCCESSFUL
Total time: 3 minutes 31 seconds

1.3 Installing Sources with Mercurial
How to install Mercurial is beyond the scope of this book. We refer the reader to mercurial.selenic.com. We assume
that the path to the hg command is already part of the system environment variable PATH (see Section 1.1.2). To
install the JPF sources with Mercurial, follow the seven steps below.

1. Create a directory named jpf.

2. To get the JPF sources with Mercurial, open a shell (Linux or OS X) or command prompt (Windows), go to the
jpf directory and type

hg clone http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

This results in output similar to the following.

destination directory: jpf-core
requesting all changes
adding changesets
adding manifests
adding file changes
added 1057 changesets with 9561 changes to 2504 files (+2 heads)
updating to branch default
932 files updated, 0 files merged, 0 files removed, 0 files unresolved

3. Set the user environment variable JAVA_HOME as described in Section 1.1.1.

4. Run ant as described in Section 1.2.1.

5. Set the user environment variable JPF_HOME to the path of jpf-core. For example, if the jpf direc-
tory, created in step 1, has path /cs/home/franck/projects/jpf, then the path of jpf-core is
/cs/home/franck/projects/jpf/jpf-core. Similarly, if the jpf directory has path C:\Users\
franck\projects\jpf, then the path of jpf-core is C:\Users\franck\projects\jpf\jpf-core.

6. Add the path of the jpf command to the system environment variable PATH as described in Section 1.1.2.

7. Create the site.properties file as described in Section 1.1.3.

Once the above steps have been successfully completed, the reader can move on to Chapter 2 and run JPF.

12

http://mercurial.selenic.com

1.4 Updating Sources with Mercurial
Since the sources of JPF change regularly, one should update JPF regularly as well. This can be done as follows.

1. Open a shell (Linux or OS X) or command prompt (Windows), go to the jpf-core directory and type

hg pull -u

We distinguish two cases. If the above command results in output similar to the following, then the sources of
JPF have not changed and, hence, we are done.

pulling from http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
searching for changes
no changes found

Otherwise, the above command results in output similar to the following, which indicates that the source of JPF
have changed and, therefore, we continue with the next step.

pulling from http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
searching for changes
adding changesets
adding manifests
adding file changes
added 22 changesets with 117 changes to 71 files
71 files updated, 0 files merged, 3 files removed, 0 files unresolved

2. Run ant as described in Section 1.2.1.

1.5 Installing Sources with Mercurial within Eclipse
How to install Eclipse and Mercurial is beyond the scope of this book. We refer the reader to eclipe.org and mercu-
rial.selenic.com, respectively. We assume that both have been installed. Eclipse should at least be version 3.5 and it
should use at least Java version 1.6. We also assume that the path to the hg command is already part of the system
environment variable PATH (see Section 1.1.2). To install JPF within Eclipse with Mercurial, follow the steps below.

1. In Eclipse, select the “Help” menu and its “Eclipse Marketplace ...” submenu.

2. Find “Mercurial” and install it.

3. In Eclipse, select the “File” menu and its “Import” submenu. Select “Mercurial” and “Clone Existing Mercurial
Repository” and provide the URL http://babelfish.arc.nasa.gov/hg/jpf/jpf-core.

4. Set the user environment variable JAVA_HOME as described in Section 1.1.1.

5. In Eclipse, build the project jpf-core by expanding the project in the package explorer, locating the file
“build.xml,” right clicking on it and selecting “Run As” and “Ant Build.” This results in output similar to the
following.

Buildfile: C:\Users\franck\workspace\jpf-core\build.xml
-cond-clean:
-init:
-compile-annotations:
-compile-main:
-compile-peers:
-compile-classes:
-compile-tests:

13

http://eclipe.org
http://mercurial.selenic.com
http://mercurial.selenic.com

-compile-examples:
compile:
-version:
build:
[copy] Copying 1 file to C:\Users\franck\workspace\jpf-core\build\main\gov\
nasa\jpf
[jar] Building jar: C:\Users\franck\workspace\jpf-core\build\jpf.jar
BUILD SUCCESSFUL
Total time: 3 seconds

6. Create the site.properties file as described in Section 1.1.3. Note that Eclipse places the jpf-core
directory within Eclipse’s workspace directory by default. Hence, assuming that the workspace has path
/cs/home/franck/workspace and user.home is /cs/home/franck, the content of site.properties
is

JPF site configuration
jpf-core=${user.home}/workspace/jpf-core
extensions=${jpf-core}

1.6 Updating Sources with Mercurial within Eclipse
Simply build the project jpf-core again.

1.7 Installing JPF Plugin for Eclipse
As we will discuss in Chapter 2, the JPF plugin can be used to run JPF within Eclipse. This plugin can be in-
stalled as follows. In Eclipse, select the “Help” menu and its “Install New Software...” submenu. Click the “Add”
button and enter http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/install/
eclipse-plugin/update/ as the ”Location.” Click the “Select All” button and subsequently the “Next” button.

1.8 Installing Sources with Mercurial within NetBeans
How to install NetBeans and Mercurial is beyond the scope of this book. We refer the reader to netbeans.org and
mercurial.selenic.com, respectively. We assume that both have been installed. NetBeans should at least be version 6.5.
We also assume that the path to the hg command is already part of the system environment variable PATH (see
Section 1.1.2). To install JPF within NetBeans with Mercurial, follow the steps below.

1. In NetBeans, set up Mercurial. For more details, do a web search for how to set up Mercurial in NetBeans.

2. In NetBeans, clone the Mercurial repository http://babelfish.arc.nasa.gov/hg/jpf/jpf-core.
For more details, do a web search for how to clone a Mercurial repository in NetBeans.

3. Set the user environment variable JAVA_HOME as described in Section 1.1.1.

4. In NetBeans, build the project jpf-core. For more details, do a web search for how to build a project in
NetBeans.

5. Create the site.properties file as described in Section 1.1.3. Note that NetBeans places the jpf-core
directory within NetBeans’ NetBeansProjects directory by default. Hence, assuming that the NetBeansProjects
has path /cs/home/franck/NetBeansProjects and user.home is /cs/home/franck, the content of
site.properties is

14

http://netbeans.org
http://mercurial.selenic.com
http://www.google.com/search?q=how+to+set+up+mercurial+in+netbeans
http://www.google.com/search?q=how+to+clone+a+mercurial+respository+in+netbeans
http://www.google.com/search?q=how+to+build+a+project+in+netbeans
http://www.google.com/search?q=how+to+build+a+project+in+netbeans

JPF site configuration
jpf-core=${user.home}/NetBeansProjects/jpf-core
extensions=${jpf-core}

1.9 Updating Sources with Mercurial within NetBeans
Simply build the project jpf-core again.

1.10 Installing JPF Plugin for NetBeans
As we will discuss in Chapter 2, the JPF plugin can be used to run JPF within NetBeans. This plugin can be installed
as follows.

1. Download babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/install/netbeans-plugin/gov-nasa-jpf-netbeans-runjpf.nbm.

2. Install the plugin. For more details, do a web search for how to install a plugin in NetBeans.

1.11 Installing an Extension of JPF
As running example, we consider the extension jpf-numeric. This extension allows us to check for numeric
properties like overflow. We assume that the reader has already successfully installed jpf-core.

1.11.1 Installing Binaries
In case binaries are available, as is the case for jpf-numeric, these can be installed as follows.

1. From the URL babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-numeric/ download the latest binary
snapshot. The file is named jpf-numeric-rdd.zip, where dd are two digits. Save this file in the jpf
directory.

2. Extract all files from the zip file jpf-numeric-rdd.zip into a subdirectory of jpf named jpf-numeric.

1.11.2 Installing Sources
In case sources are available, as is the case for jpf-numeric, these can be installed as follows.

1. From the URL babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-numeric/ download the latest source
snapshot. The file is named jpf-numeric-rdd-src.zip, where dd are two digits. Save this file in the
jpf directory.

2. Extract all files from the zip file jpf-numeric-rdd-src.zip into a subdirectory of jpf named jpf-numeric.

3. Run ant as described in Section 1.2.1.

1.11.3 Installing Sources with Mercurial
In case sources are available via Mercurial, as is the case for jpf-numeric, these can be installed as follows.

1. To get the jpf-numeric sources with Mercurial, open a shell (Linux or OS X) or command prompt (Win-
dows), go to the jpf directory and type

hg clone http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric

2. Run ant as described in Section 1.2.1.

15

http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/install/netbeans-plugin/gov-nasa-jpf-netbeans-runjpf.nbm
http://www.google.com/search?q=how+to+install+a+netbeans+plugin
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-numeric/
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/projects/jpf-numeric/

1.11.4 Updating Sources with Mercurial

1. Open a shell (Linux or OS X) or command prompt (Windows), go to the jpf-numeric directory and type

hg pull -u

We distinguish two cases. If the above command results in output similar to the following, then the sources of
jpf-numeric have not changed and, hence, we are done.

pulling from http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric
searching for changes
no changes found

Otherwise, the above command results in output similar to the following, which indicates that the source of
jpf-numeric have changed and, therefore, we continue with the next step.

pulling from http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric
searching for changes
adding changesets
adding manifests
adding file changes
added 4 changesets with 23 changes to 7 files
7 files updated, 0 files merged, 1 files removed, 0 files unresolved

2. Run ant as described in Section 1.2.1.

1.11.5 Installing Sources with Mercurial within Eclipse

In case sources are available via Mercurial, as is the case for jpf-numeric, these can be installed as follows.

1. In Eclipse, clone the Mercurial repository http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric.

2. In Eclipse, build the project jpf-numeric.

1.11.6 Updating Sources with Mercurial within Eclipse

To update jpf-numeric, follow the steps below.

1. In Eclipse, pull the Mercurial repository http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric.
For more details, see bitbucket.org/mercurialeclipse/main/wiki/Home.

2. In Eclipse, build the project jpf-numeric. For more details, do a web search for how to build a project in
Eclipse.

1.11.7 Installing Sources with Mercurial within NetBeans

In case sources are available via Mercurial, as is the case for jpf-numeric, these can be installed as follows.

1. In NetBeans, clone the Mercurial repository http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric.
For more details, do a web search for how to clone a Mercurial repository in NetBeans.

2. In NetBeans, build the project jpf-core. For more details, do a web search for how to build a project in
NetBeans.

16

http://bitbucket.org/mercurialeclipse/main/wiki/Home
http://www.google.com/search?q=eclipse+"building+resources"
http://www.google.com/search?q=eclipse+"building+resources"
http://www.google.com/search?q=how+to+clone+a+mercurial+respository+in+netbeans
http://www.google.com/search?q=how+to+build+a+project+in+netbeans
http://www.google.com/search?q=how+to+build+a+project+in+netbeans

1.11.8 Updating Sources with Mercurial within NetBeans
To update jpf-numeric, follow the steps below.

1. In NetBeans, pull the Mercurial repository http://babelfish.arc.nasa.gov/hg/jpf/jpf-numeric.
For more details, do a web search for how to clone a Mercurial repository in NetBeans.

2. In NetBeans, build the project jpf-numeric. For more details, do a web search for how to build a project in
NetBeans.

17

http://www.google.com/search?q=how+to+clone+a+mercurial+respository+in+netbeans
http://www.google.com/search?q=how+to+build+a+project+in+netbeans
http://www.google.com/search?q=how+to+build+a+project+in+netbeans

18

Chapter 2

Running JPF

Now that we have discussed how to install JPF, let us focus on how to run JPF. It can be run in several different ways.
In Section 2.1 and 2.2 we first show how to run JPF in a shell (Linux or OS X) or command prompt (Windows). How
to run JPF within Eclipse and NetBeans are the topics of Section 2.3 and 2.4, respectively.

2.1 Running JPF within a Shell or Command Prompt
Let us use the notorious “Hello World” example to show how to run JPF in its most basic form. Consider the following
Java application.

public class HelloWorld {
public static void main(String [] args) {
System.out.println("Hello World!");

}
}

In the directory where we can find HelloWorld.class, we create the application properties file named HelloWorld.jpf1

with the following content.

target=HelloWorld
classpath=.

The key target has the name of the application to be checked by JPF as its value. The key classpath has JPF’s
classpath as its value. In this case, it is set to the current directory. It is important not to mix up JPF’s classpath with
Java’s classpath. We will come back to this later.

To run JPF on this example, open a shell (Linux or OS X) or command prompt (Windows) and type jpf HelloWorld.jpf.
This results in output similar to the following.

1 JavaPathfinder v6.0 (rev 1035+) - (C) RIACS/NASA Ames Research Center
2

3

4 == system under test
5 HelloWorld.main()
6

7 == search started: 6/20/13 1:25 PM
8 Hello World!
9

10 == results

1Although the name of the application properties file does not have to match the name of the Java application—we could have called it, for
example, Test.jpf—we will use that convention in this book.

19

11 no errors detected
12

13 == statistics
14 elapsed time: 00:00:00
15 states: new=1, visited=0, backtracked=1, end=1
16 search: maxDepth=1, constraints hit=0
17 choice generators: thread=1 (signal=0, lock=1, shared ref=0), data=0
18 heap: new=366, released=14, max live=0, gc-cycles=1
19 instructions: 4158
20 max memory: 236MB
21 loaded code: classes=61, methods=1195
22

23 == search finished: 6/20/13 1:25 PM

Line 1 contains general information. It tells us that we used version 6.0, revision 1035 of JPF. The Research
Institute for Advanced Computer Science (RIACS)/NASA Ames Research Center holds the copyright of JPF. The
remainder of the output is divided into several parts. The number of parts, their headings and content can be configured.
The above output is produced by the default configuration. The first part, line 4–5, describes the system under test. In
this case, it is the main method of the HelloWorld class. The second part, line 7–8, contains the output produced
by the system under test and the date and time when JPF was started. In this case, the output is Hello World! If the
output I won’t say it! is produced instead, the classpath has not been set correctly and, as a consequence,
JPF checks the HelloWorld application which is part of jpf-core. The third part, line 10–11, contains the results
of the model checking effort by JPF. In this case, no errors were detected. By default, JPF checks for uncaught
exceptions and deadlocks. The fourth and final part, line 13–21, contains some statistics. We will discuss them below.
The output ends with line 23 which contains the date and time when JPF finished.

It remains to discuss the statistics part. Line 14 describes the amount of time it took JPF to model check the
HelloWorld application. Since it took less than one second, JPF reports zero hours, zero minutes and zero seconds.

Line 15 categorizes the states visited by JPF. A state is considered new the first time it is visited by JPF. If a state
is visited again, it is counted as visited. The final states are also called end states. Those states reached as a result of a
backtrack are counted as backtrack. In the above example, JPF visits a state which is an end state (1) and subsequently
backtracks to the initial state (0).

0 // 1

We will come back to this classification in Section ??.
Line 16 provides us with some data about the search for bugs by JPF. The search of JPF is similar to the traversal

of a directed graph. The states of JPF correspond to the vertices of the graph and the transitions of JPF correspond to
the edges of the graph. In a search, the depth of a state is the length of the partial execution, a sequence of transitions,
along which the state is discovered. From the above diagram, we can conclude that the maximal depth is one in our
example. During the search, JPF checks some constraints. By default, it checks two constraints. Firstly, it checks that
the depth of the seach is smaller than or equal to the value of the key search.depth_limit. By default, its value
is 231 − 1. This JPF property can be configured as we will discuss in Section ??. Secondly, it checks that the amount
of remaining memory is smaller than or equal to the value of the key search.min_free. By default, its value is
220. Also this JPF property can be configured. In our example, no constraints are violated and, hence, the number of
constraint hits is zero.

Line 17 contains information about the choice generators. These capture the scheduling and will be discussed in
more detail in Section ??. Some statistics about the heap of JPF’s virtual machine are given in line 18.

Line 19 specifies the number of bytecode instructions that have been checked by JPF. The maximum amount of
memory used by JPF is given in line 20. Line 21 contains the number of classes and methods that have been checked
by JPF.

If the class HelloWorld were part of the package test, then the application properties file would contain the
following.

target=test.HelloWorld

20

classpath=.

2.2 Detecting Bugs with JPF
Let us now present some examples of JPF detecting a bug. The examples are kept as simple as possible. As a
consequence, they are not realistic representatives of applications on which one might want to apply JPF. However,
they allow us to focus on detecting bugs with JPF.

Recall that JPF checks for uncaught exceptions and deadlock by default. Consider the following system under test.

1 public class UncaughtException {
2 public static void main(String [] args) {
3 System.out.println(1 / 0);
4 }
5 }

Obviously, line 3 throws an exception that is not caught. Running JPF on this example results in output similar to
the following.

1 JavaPathfinder v6.0 (rev 1035+) - (C) RIACS/NASA Ames Research Center
2

3

4 == system under test
5 UncaughtException.main()
6

7 == search started: 08/07/13 7:05 PM
8

9 == error 1
10 gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
11 java.lang.ArithmeticException: division by zero
12 at UncaughtException.main(UncaughtException.java:3)
13

14

15 == snapshot #1
16 thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,
17 lockCount:0,suspendCount:0}
18 call stack:
19 at UncaughtException.main(UncaughtException.java:3)
20

21

22 == results
23 error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
24 "java.lang.ArithmeticException: division by zero a..."
25

26 == statistics
27 elapsed time: 00:00:00
28 states: new=1, visited=0, backtracked=0, end=0
29 search: maxDepth=1, constraints hit=0
30 choice generators: thread=1 (signal=0, lock=1, shared ref=0), data=0
31 heap: new=380, released=0, max live=0, gc-cycles=0
32 instructions: 3312
33 max memory: 90MB
34 loaded code: classes=65, methods=1226

21

35

36 == search finished: 08/07/13 7:05 PM

Line 9–12 report the bug detected. JPF can be configured to detect multiple errors, as we will discuss in Chap-
ter ??. By default, JPF finishes after detecting the first bug. Line 10 describes the type of bug detected. In this case, the
NoUncaughtExceptionProperty is violated and, hence, an exception has not been caught. Line 11 and 12 pro-
vide the stack trace. From this stack trace we can deduce that the uncaught exception is an ArithmeticException
and it occurs in line 3 of the main method of the UncaughtException class. Line 15–19 provides some infor-
mation for each relevant thread. In this case, there is only a single thread. For each thread JPF records a unique
identifier, its name, its status, its priority and two counters. Furthermore, it prints the stack trace of each relevant
thread. Line 22-24 summarize the results.

If an assertion, specified by the assert statement, fails, an AssertionError is thrown. Hence, JPF can detect
these. Consider the following application.

1 public class FailingAssertion {
2 public static void main(String[] args) {
3 int i = 0;
4 assert i == 1;
5 }
6 }

The output produced by JPF for this example is very similar to that produced for the previous example. JPF reports
that an uncaught AssertionError occurs in line 4 of the main method of the FailingAssertion class.

2.3 Running JPF within Eclipse
We assume that the reader has installed the JPF plugin (see Section 1.7). Let us also assume that we have created an
Eclipse project named example which contains the class HelloWorld in the default package. If we installed JPF
as described in Section 1.5, then the file HelloWorld.java can be found in the directory /cs/home/franck/
workspace/examples/src (Linux) and C:\Users\franck\workspace\examples\src (Windows). The
corresponding file HelloWorld.class can be found in the directory /cs/home/franck/workspace/
examples/bin (Linux) and C:\Users\franck \workspace\examples\bin (Windows).

Next, we create the HelloWorld.jpf file. Although this file can be placed in any directory, it is most convenient
to place it in the same directory as the HelloWorld.java file. As before, the most basic application properties
file only contains two keys: target and classpath. In this case, the value of classpath is the directory that
contains HelloWorld.class. For example, for Windows the content of HelloWorld.jpf becomes

target=HelloWorld
classpath=C:/Users/franck/workspace/examples/bin

Finally, to run JPF on this example within Eclipse, right click on HelloWorld.jpf in the package explorer and
select the option Verify... It results in the output similar to what we have seen in the previous section, preceded
by something like

Executing command: java -ea -jar C:\Users\franck\workspace\jpf-core\build\RunJPF.jar
+shell.port=4242 C:\Users\franck\workspace\examples\src\HelloWorld.jpf

2.4 Running JPF within NetBeans
We assume that the reader has installed the JPF plugin (see Section 1.10). Let us also assume that we have created a
NetBeans project named example which contains the class HelloWorld in the default package. If we installed JPF
as described in Section 1.8, then the file HelloWorld.java can be found in the directory /cs/home/franck/
NetBeansProjects/examples/src (Linux) and C:\Users\franck\NetBeansProjects\examples\src

22

(Windows). The corresponding file HelloWorld.class can be found in the directory /cs/home/franck/
NetBeansProjects/examples/build/classes (Linux) and C:\Users\franck\NetBeansProjects\
examples\build\classes (Windows).

Next, we create the HelloWorld.jpf file. Although this file can be placed in any directory, it is most convenient
to place it in the same directory as the HelloWorld.java file. As before, the most basic application properties
file only contains two keys: target and classpath. In this case, the value of classpath is the directory that
contains HelloWorld.class. For example, for Windows the content of HelloWorld.jpf becomes

target=HelloWorld
classpath=C:/Users/franck/NetBeansProjects/examples/build/classes

Finally, to run JPF on this example within NetBeans, right click on HelloWorld.jpf and select the option
Verify... It results in the output similar to what we have seen in the previous section, preceded by something like

Executing command: java -ea -jar
C:\Users\franck\NetBeansProjects\jpf-core\build\RunJPF.jar
+shell.port=4242 C:\Users\franck\NetBeansProjects\examples\src\HelloWorld.jpf

23

24

Bibliography

[BBF+01] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci,
Philippe Schnoebelen, and Pierre McKenzie. Systems and Software Verification: Model-Checking Tech-
niques and Tools. Springer-Verlag, 2001.

[BJC+13] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen. Reversible debugging
software. Technical report, Cambridge University, Cambridge, United Kingdom, January 2013.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcliff, Shawn Laubach, Corina Pǎsǎreanu, Robby, and Hongjun
Zheng. Bandera: extracting finite-state models from Java source code. In Carlo Ghezzi, Mehdi Jazayeri,
and Alexander Wolf, editors, Proceedings of the 22nd International Conference on Software Engineering,
pages 439–448, Limerick, Ireland, June 2000. ACM.

[CGP01] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. The MIT Press, 2001.

[RDH03] Robby, Matthew Dwyer, and John Hatcliff. Bogor: an extensible and highly-modular software model
checking framework. In Proceedings of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 267–276, Helsinki, Finland, September 2003. ACM.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda. Model checking
programs. Automated Software Engineering, 10(2):203–232, April 2003.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and Seungjoon Park. Model checking programs. In
Proceedings of the 15th IEEE International Conference on Automated Software Engineering, pages 3–12,
Grenoble, France, September 2000. IEEE.

25

	Installing JPF
	Installing Binaries
	Setting User Environment Variable JAVAHOME
	Adding to the System Environment Variable PATH
	Creating the site.properties File

	Installing Sources
	Running Ant

	Installing Sources with Mercurial
	Updating Sources with Mercurial
	Installing Sources with Mercurial within Eclipse
	Updating Sources with Mercurial within Eclipse
	Installing JPF Plugin for Eclipse
	Installing Sources with Mercurial within NetBeans
	Updating Sources with Mercurial within NetBeans
	Installing JPF Plugin for NetBeans
	Installing an Extension of JPF
	Installing Binaries
	Installing Sources
	Installing Sources with Mercurial
	Updating Sources with Mercurial
	Installing Sources with Mercurial within Eclipse
	Updating Sources with Mercurial within Eclipse
	Installing Sources with Mercurial within NetBeans
	Updating Sources with Mercurial within NetBeans

	Running JPF
	Running JPF within a Shell or Command Prompt
	Detecting Bugs with JPF
	Running JPF within Eclipse
	Running JPF within NetBeans

