Linear Temporal Logic EECS 4315

www.cse.yorku.ca/course/4315/

Linear Temporal Logic

Linear temporal logic (LTL) is a logic to reason about systems with nondeterminism.

The logic was introduced by Amir Pnueli.

A. Pnueli. The temporal logic of programs. In *Proceedings of the 18th IEEE Symposium on Foundations of Computer Science*, pages 46–67. Providence, RI, USA, October/November 1977. IEEE.

Amir Pnueli (1941–2009)

- Recipient of the Turing Award (1996)
- Recipient of the Israel prize (2000)
- Foreign Associate of the U.S. National Academy of Engineering (1999)
- Fellow of the Association for Computing Machinery (2007)

Source: David Monniaux

Linear Temporal Logic

Definition

LTL is defined by the following grammar.

$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U} \varphi$$

where a is an atomic proposition.

An atomic proposition represents a basic property (such as the value of a particular variable being even).

Given an execution path π , does it satisfy a particular LTL formula φ ?

Given an execution path π , does it satisfy a particular LTL formula φ ?

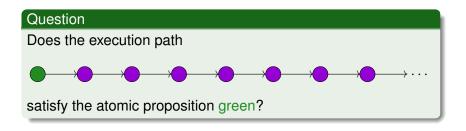
true is always satisfied.

Given an execution path π , does it satisfy a particular LTL formula φ ?

An atomic proposition *a* is satisfied if *a* holds in the initial state of the execution path.

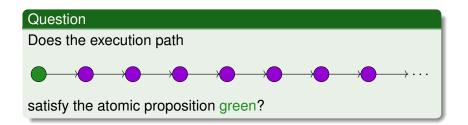
Given an execution path π , does it satisfy a particular LTL formula φ ?

An atomic proposition *a* is satisfied if *a* holds in the initial state of the execution path.



Given an execution path π , does it satisfy a particular LTL formula φ ?

An atomic proposition *a* is satisfied if *a* holds in the initial state of the execution path.

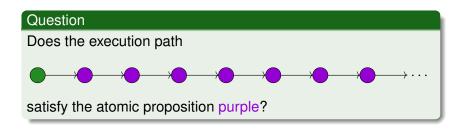


Answer

Yes.

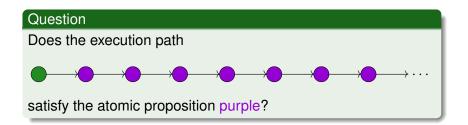
Given an execution path π , does it satisfy a particular LTL formula φ ?

An atomic proposition *a* is satisfied if *a* holds in the initial state of the execution path.



Given an execution path π , does it satisfy a particular LTL formula φ ?

An atomic proposition *a* is satisfied if *a* holds in the initial state of the execution path.



Answer

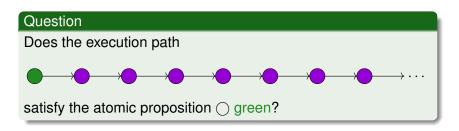
No.

Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

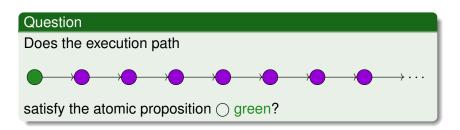
Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).



Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

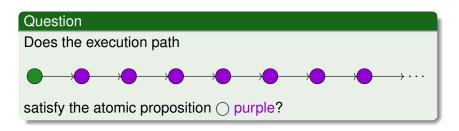


Answer

No.

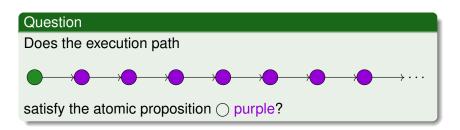
Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).



Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

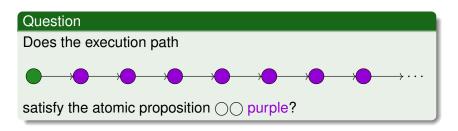


Answer

Yes.

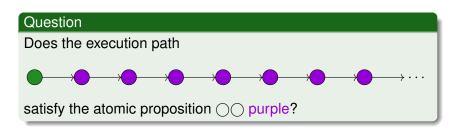
Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).



Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).



Answer

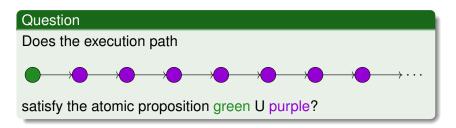
Yes.

Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

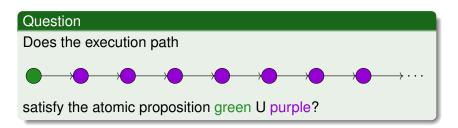
Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.



Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

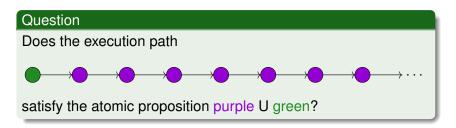


Answer

Yes.

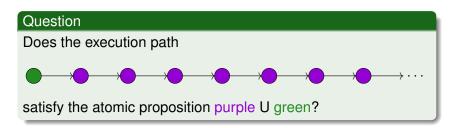
Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.



Given an execution path π , does it satisfy a particular LTL formula φ ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.



Answer

Yes.

Syntactic sugar

As usual

$$\varphi_1 \vee \varphi_2 = \neg(\neg \varphi_1 \wedge \neg \varphi_2)$$

$$\varphi_1 \Rightarrow \varphi_2 = \neg \varphi_1 \vee \varphi_2$$

Also

Alternative syntax

 $\begin{array}{cccc} \mathsf{X}\varphi & : & \bigcirc\varphi \\ \mathsf{F}\varphi & : & \Diamond\varphi \\ \mathsf{G}\varphi & : & \Box\varphi \end{array}$

State Space Diagram

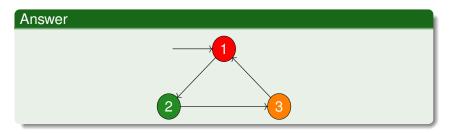
Question

Draw the state space diagram of a model of a traffic light.

State Space Diagram

Question

Draw the state space diagram of a model of a traffic light.



Note: the transitions are not labelled, but the states are labelled.

Transition System

Definition

A transition system is a tuple $\langle S, L, I, \rightarrow, \ell \rangle$ consisting of

- a set S of states,
- a set L of labels,
- A set $I \subseteq S$ of initial states,
- a transition relation $\rightarrow \subseteq S \times S$ such that for all $s \in S$ there exists a $s' \in S$ such that $s \rightarrow s'$, and
- a labelling function $\ell: S \to 2^L$.

 2^L denotes the set of subsets of L.

Powerset

Question

What is $2^{\{1,2,3\}}$?

Powerset

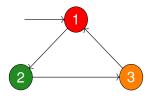
Question

What is $2^{\{1,2,3\}}$?

Answer

 $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$

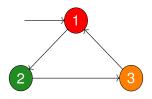
Transition System



Question

Give the transition system modelling a traffic light.

Transition System

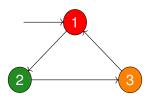


Question

Give the transition system modelling a traffic light.

Answer

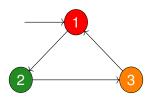
```
\begin{split} &\langle \{1,2,3\}, \{\text{red}, \text{green}, \text{orange}\}, \\ &\{1\}, \{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1\} \\ &\{1 \mapsto \{\text{red}\}, 2 \mapsto \{\text{green}\}, 3 \mapsto \{\text{orange}\}\} \rangle \end{split}
```

$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \ \mathsf{U} \ \varphi$$

Question

Which LTL formula expresses "initially the light is red."



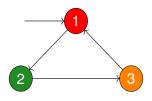
$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U} \varphi$$

Question

Which LTL formula expresses "initially the light is red."

Answer

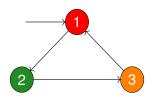
The LTL formula red.



$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \ \mathsf{U} \ \varphi$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."



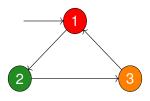
$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U} \varphi$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

Answer

The LTL formula red ∧ ∩green

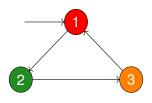


$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \ \mathsf{U} \ \varphi$$

Question

Which LTL formula expresses "the light becomes eventually orange."

LTL



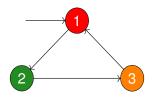
$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U} \varphi$$

Question

Which LTL formula expresses "the light becomes eventually orange."

Answer

The LTL formula true U orange = ♦orange

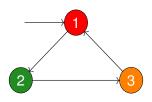


$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \; \mathsf{U} \; \varphi$$

Question

Which LTL formula expresses "the light is infinitely often red."

LTL



$$\varphi ::= \mathsf{true} \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U} \varphi$$

Question

Which LTL formula expresses "the light is infinitely often red."

Answer

The LTL formula □◊red

LTL

Question

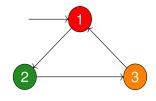
What does the LTL formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

Question

What does the LTL formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

<u>A</u>nswer

"Once green, the light cannot become red immediately"

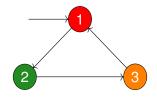


Definition

Paths(s) is the set of path starting in state s.

Question

What is Paths(2)?



Definition

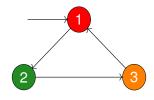
Paths(s) is the set of path starting in state s.

Question

What is Paths(2)?

Answer

{231231231231...}

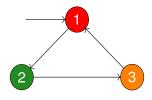


Definition

Let $\pi \in Paths(s)$ and $n \ge 0$. Then $\pi[n]$ is the $(n+1)^{\text{th}}$ state of the path π .

Question

Let $\pi = 123123 \cdots$. What is $\pi[3]$?



Definition

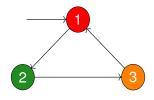
Let $\pi \in Paths(s)$ and $n \ge 0$. Then $\pi[n]$ is the $(n+1)^{\text{th}}$ state of the path π .

Question

Let $\pi = 123123 \cdots$. What is $\pi[3]$?

Answer

1.

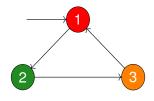


Definition

Let $\pi \in Paths(s)$ and $n \ge 0$. Then $\pi[n..]$ is the suffix of π starting with the $(n+1)^{\mbox{th}}$ state.

Question

Let $\pi = 123123 \cdots$. What is $\pi[2..]$?



Definition

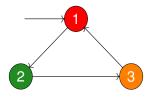
Let $\pi \in Paths(s)$ and $n \ge 0$. Then $\pi[n..]$ is the suffix of π starting with the $(n+1)^{\mbox{th}}$ state.

Question

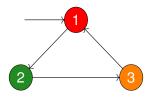
Let $\pi = 123123 \cdots$. What is $\pi[2..]$?

Answer

312312...



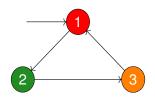
 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ



 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

123123 · · · ⊨ green?



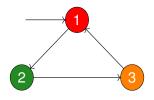
 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

 $123123 \cdots \models green?$

Answer

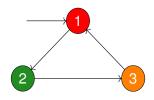
No.



 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

123123 · · · ⊨ ⊜green?



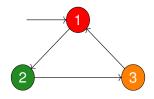
 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

 $123123 \cdots \models \bigcirc green?$

Answer

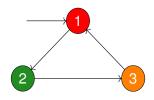
Yes.



 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

 $123123 \cdots \models red \land \bigcirc green?$



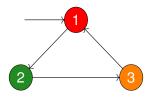
 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

 $123123 \cdots \models red \land \bigcirc green?$

Answer

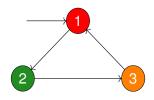
Yes.



 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

123123 · · · |= ¬green?



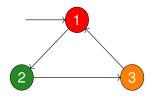
 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

123123 · · · ⊨ ¬green?

Answer

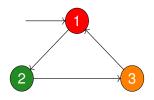
Yes.



 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

 $123123 \cdots \models \text{red U green?}$



 $\pi \models \varphi$ denotes that path π satisfies LTL formula φ

Question

 $123123 \cdots \models \text{red U green?}$

Answer

Yes.

Definition