Linear Temporal Logic EECS 4315

www.cse.yorku.ca/course/4315/

Weak Until

Definition

The weak until operator is defined by

$$
\varphi \mathrm{W} \psi=(\varphi \mathrm{U} \psi) \vee \square \phi
$$

Weak Until

Definition

The weak until operator is defined by

$$
\varphi \mathbf{W} \psi=(\varphi \bigcup \psi) \vee \square \phi
$$

Question

$\pi \vDash \varphi \mathbf{W} \psi$ iff?

Weak Until

Definition

The weak until operator is defined by

$$
\varphi \mathbf{W} \psi=(\varphi \bigcup \psi) \vee \square \phi
$$

Question

$\pi=\varphi \mathbf{W} \psi$ iff?

Answer

$$
(\exists i \geq 0: \pi[i . .] \models \psi \text { and } \forall 0 \leq j<i: \pi[j . .] \models \varphi) \operatorname{or} \forall i \geq 0: \pi[i . .] \models \varphi
$$

Definition

The set of LTL formulas in positive normal form is defined by the grammar

$$
\varphi::=\text { true } \mid \text { false }|a| \neg a|\varphi \wedge \varphi| \varphi \vee \varphi|\bigcirc \varphi| \varphi \mathrm{U} \varphi \mid \varphi \mathrm{W} \varphi
$$

Positive Normal Form

Definition

The set of LTL formulas in positive normal form is defined by the grammar

$$
\varphi::=\operatorname{true} \mid \text { false }|a| \neg a|\varphi \wedge \varphi| \varphi \vee \varphi|\bigcirc \varphi| \varphi \cup \varphi \mid \varphi \mathrm{W} \varphi
$$

Theorem

For each LTL formula there exists an equivalent LTL formula in positive normal form.

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer
Yes, for example, "Always a state satisfying a can be reached"

Expressiveness of LTL

Theorem

There does not exists an LTL formula φ with $T S \models \varphi$ iff
$\forall \pi \in \operatorname{Paths}(T S): \forall m \geq 0: \exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \exists n \geq 0: \pi^{\prime}[n] \vDash$.

How to Modify the Logic?

$\forall \pi \in \operatorname{Paths}(T S): \forall m \geq 0: \exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \underbrace{\exists n \geq 0: \pi^{\prime}[n] \models a}_{\diamond a}$

How to Modify the Logic?

$\forall \pi \in \operatorname{Paths}(T S): \forall m \geq 0: \overbrace{\exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \underbrace{\exists n \geq 0: \pi^{\prime}[n] \models a}_{\diamond a}}^{\exists \diamond a}$

How to Modify the Logic?

$$
\forall \pi \in \operatorname{Paths}(T S): \underbrace{\forall m \geq 0: \overparen{\exists \pi^{\prime} \in \operatorname{Paths}(\pi[m])}: \underbrace{\exists 0 \mathrm{~m} \geq 0: \pi^{\prime}[n] \models a}_{0 a}}_{\text {D习ßa }}
$$

How to Modify the Logic?

How to Modify the Logic?

$$
\overbrace{\exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \underbrace{\exists n \geq 0: \pi^{\prime}[n] \models a}_{\diamond a}}^{\exists \diamond a}
$$

Recall that $\pi \models \diamond$ a expresses that path π satisfies formula \diamond a.
Question
$? \vDash \exists \diamond$ a.

How to Modify the Logic?

$$
\overbrace{\exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \underbrace{\exists n \geq 0: \pi^{\prime}[n] \models a}_{\diamond a}}^{\exists \diamond a}
$$

Recall that $\pi \models \diamond$ a expresses that path π satisfies formula \diamond a.
Question
$? \vDash \exists \diamond$ a.

Answer

There exists a path π starting in state s such that $\pi \models \diamond$ a, hence, $s \vDash \exists \diamond$ a.

How to Modify the Logic?

$$
\overbrace{\exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \underbrace{\exists n \geq 0: \pi^{\prime}[n] \models a}_{\diamond a}}^{\exists \diamond a}
$$

Recall that $\pi \models \diamond$ a expresses that path π satisfies formula \diamond a.
Question
$? \vDash \exists \diamond$ a.

Answer

There exists a path π starting in state s such that $\pi \models \diamond$ a, hence, $s \models \exists \diamond$ a.

Consequence

We should distinguish between path formulas and state formulas.

Syntax

The state formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \varphi \mid \forall \varphi
$$

The path formulas are defined by

$$
\varphi::=\bigcirc \Phi \mid \Phi \cup \Phi
$$

Computation Tree Logic

Computation tree logic (CTL)
Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In, Dexter Kozen, editor, Proceedings of Workshop on Logic of Programs, volume 131 of Lecture Notes in Computer Science, pages 52-71. Yorktown Heights, NY, USA, May 1981. Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in CESAR. In, Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings of the 5th International Symposium on Programming, volume 137 of Lecture Notes in Computer Science, pages 337-351. Torino, Italy, April 1982. Springer-Verlag.

Syntactic sugar

$$
\begin{aligned}
\exists \diamond \Phi & =\exists(\text { true U } \Phi) \\
\forall \diamond \Phi & =\forall(\text { true U } \Phi) \\
\exists \square \Phi & =\neg \forall(\text { true U } \neg \Phi) \\
\forall \square \Phi & =\neg \exists(\text { true } U \neg \Phi)
\end{aligned}
$$

Example

Question

How to express
"Each red light is preceded by a green light" in CTL?

Example

Question

How to express
"Each red light is preceded by a green light" in CTL?

Answer

\neg red $\wedge \forall \square($ green $\vee \forall \bigcirc \neg$ red $)$

Example

Question

How to express
"The light is infinitely often green" in CTL?

Example

Question
 How to express
 "The light is infinitely often green" in CTL?

Answer
 $\forall \square \forall \Delta$ green

Semantics of CTL

$$
\begin{array}{rlr}
s & =\text { true } & \\
s \models a & \text { iff } & a \in \ell(s) \\
s \models \Phi \wedge \psi & \text { iff } & s \models \Phi \text { and } s \models \psi \\
s \models \neg \Phi & \text { iff } & \operatorname{not}(s \models \Phi) \\
s \models \exists \varphi & \text { iff } & \exists \pi \in \operatorname{Paths}(s): \pi \models \varphi \\
s \models \forall \varphi & \text { iff } & \forall \pi \in \operatorname{Paths}(s): \pi \models \varphi
\end{array}
$$

and

$$
\begin{array}{rll}
\pi \models \bigcirc \Phi & \text { iff } & \pi[1] \models \Phi \\
\pi \models \Phi \cup \Psi & \text { iff } & \exists i \geq 0: \pi[i] \models \Psi \text { and } \forall 0 \leq j<i: \pi[j] \models \Phi
\end{array}
$$

Semantics of CTL

$$
T S \models \Phi \text { iff } \forall s \in l: s \models \Phi .
$$

The satisfaction set $\operatorname{Sat}(\Phi)$ is defined by

$$
\operatorname{Sat}(\Phi)=\{s \in S \mid s \models \Phi\} .
$$

Semantics of CTL

Question
Recall that

$$
\exists \diamond \Phi=\exists(\text { true } U \Phi)
$$

How is

$$
s \models \exists \diamond \Phi
$$

defined?

Semantics of CTL

Question
Recall that

$$
\exists \diamond \Phi=\exists(\text { true } U \Phi)
$$

How is

$$
s \models \exists \diamond \Phi
$$

defined?

Answer

$$
\exists \pi \in \operatorname{Paths}(s): \exists i \geq 0: \pi[i] \models \Phi .
$$

Semantics of CTL

Question
Recall that

$$
\forall \diamond \Phi=\forall(\text { true } U \Phi)
$$

How is

$$
s \models \forall \diamond \Phi
$$

defined?

Semantics of CTL

Question
Recall that

$$
\forall \diamond \Phi=\forall(\text { true } U \Phi)
$$

How is

$$
s \models \forall \diamond \Phi
$$

defined?

Answer

$$
\forall \pi \in \operatorname{Paths}(s): \exists i \geq 0: \pi[i] \models \Phi
$$

Semantics of CTL

Question
Recall that

$$
\exists \square \Phi=\neg \forall(\text { true } U \neg \Phi)
$$

How is

$$
\boldsymbol{s} \models \exists \square \Phi
$$

defined?

Semantics of CTL

Question
Recall that

$$
\exists \square \Phi=\neg \forall(\text { true } U \neg \Phi)
$$

How is

$$
\boldsymbol{s} \models \exists \square \Phi
$$

defined?

Answer

$$
\exists \pi \in \operatorname{Paths}(s): \forall i \geq 0: \pi[i] \models \Phi .
$$

Semantics of CTL

Question
Recall that

$$
\forall \square \Phi=\neg \exists(\text { true } U \neg \Phi)
$$

How is

$$
\boldsymbol{s} \models \forall \square \Phi
$$

defined?

Semantics of CTL

Question
Recall that

$$
\forall \square \Phi=\neg \exists(\text { true } U \neg \Phi)
$$

How is

$$
\boldsymbol{s} \models \forall \square \Phi
$$

defined?

Answer

$$
\forall \pi \in \operatorname{Paths}(s): \forall i \geq 0: \pi[i] \models \Phi .
$$

Expressiveness of LTL and CTL

Theorem
The property
$\forall \pi \in \operatorname{Paths}(T S): \forall m \geq 0: \exists \pi^{\prime} \in \operatorname{Paths}(\pi[m]): \exists n \geq 0: \pi^{\prime}[n] \models a$
cannot be captured by LTL, but is captured by the CTL formula $\forall \square \exists \diamond a$.

Expressiveness of LTL and CTL

Theorem

The property

$$
\forall \pi \in \operatorname{Paths}(T S): \exists i \geq 0: \forall j \geq i: \pi[j . .] \vDash a
$$

cannot be captured by CTL, but is captured by the LTL formula $\diamond \square a$.

