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Syntax of CTL

Definition
The state formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃ϕ | ∀ϕ

The path formulas are defined by

ϕ ::=©Φ | Φ U Φ
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Semantics of CTL

Definition
The relation |= is defined by

s |= true
s |= a iff a ∈ `(s)

s |= Φ ∧Ψ iff s |= Φ and s |= Ψ
s |= ¬Φ iff not(s |= Φ)
s |= ∃ϕ iff ∃π ∈ Paths(s) : π |= ϕ
s |= ∀ϕ iff ∀π ∈ Paths(s) : π |= ϕ

and

π |=©Φ iff π[1] |= Φ
π |= Φ U Ψ iff ∃i ≥ 0 : π[i] |= Ψ and ∀0 ≤ j < i : π[j] |= Φ
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Satisfaction Set

Definition
The satisfaction set Sat(Φ) is defined by

Sat(Φ) = { s ∈ S | s |= Φ }.
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Model checking CTL

Basic idea
Compute Sat(Φ) by recursion on the structure of Φ.

TS |= Φ iff I ⊆ Sat(Φ).

Alternative view
Label each state with the subformulas of Φ that it satisfies.
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Model checking CTL

Definition
The state formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃ϕ | ∀ϕ

The path formulas are defined by

ϕ ::=©Φ | Φ U Φ

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)
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Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(true)?

Answer
Sat(true) = S

Alternative view
Label each state with true.
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Example

true

// 1

��

2 //

TT
3

^^

1 7→ {true}
2 7→ {true}
3 7→ {true}
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Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(a)?

Answer
Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view
Label each state s satisfying a ∈ `(s) with a.
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Example

green

// 1

��

2 //

TT
3

^^

1 7→ {green}
2 7→ {green}
3 7→ ∅
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Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(Φ ∧Ψ)?

Answer
Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Alternative view
Label states, that are labelled with both Φ and Ψ, also with
Φ ∧Ψ.
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Example

green ∧ purple

// 1

��

2 //

TT
3

^^

1 7→ {green}
2 7→ {green}
3 7→ {purple}
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Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(¬Φ)?

Answer
Sat(¬Φ) = S \ Sat(Φ)

Alternative view
Label each state, that is not labelled with Φ, with ¬Φ.
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Example

¬(green ∧ purple)

// 1

��

2 //

TT
3

^^

1 7→ {green,¬(green ∧ purple)}
2 7→ {green,¬(green ∧ purple)}
3 7→ {purple,¬(green ∧ purple)}
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Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(∃©Φ)?

Answer
Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) 6= ∅ } where
Post(s) = { s′ ∈ S | s → s′ }.

Alternative view
Labels those states, that have a direct successor labelled with
Φ, also with ∃©Φ.
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Example

∃©green

// 1

��

2 //

TT
3

^^

1 7→ {green,∃©green}
2 7→ {green,∃©green}
3 7→ {∃©green}
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Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(∃(Φ U Ψ))?

Proposition

Sat(∃(Φ U Ψ)) is the smallest subset T of S such that
(a) Sat(Ψ) ⊆ T and
(b) if s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ then s ∈ T .

Question
Does such a smallest subset exist?

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 40

www.cse.yorku.ca/course/4315/


Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(∃(Φ U Ψ))?

Proposition

Sat(∃(Φ U Ψ)) is the smallest subset T of S such that
(a) Sat(Ψ) ⊆ T and
(b) if s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ then s ∈ T .

Question
Does such a smallest subset exist?

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 40

www.cse.yorku.ca/course/4315/


Model checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Question
What is Sat(∃(Φ U Ψ))?

Proposition

Sat(∃(Φ U Ψ)) is the smallest subset T of S such that
(a) Sat(Ψ) ⊆ T and
(b) if s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ then s ∈ T .

Question
Does such a smallest subset exist?

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 40

www.cse.yorku.ca/course/4315/


Crash Course on Order Theory
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Partially Ordered Set

Definition
A partially ordered set is a tuple 〈A,v〉 consisting of

a set A and
a relation v ⊆ A× A satisfying for all a, b, and c ∈ A,

a v a,
if a v b and b v a then a = b, and
if a v b and b v c then a v c.
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Examples

b c

a

@@__

depicts the partially ordered set

〈{a,b, c}, {(a,a), (a,b), (a, c), (b,b), (c, c)}〉.

〈[0,1],≤〉 is a partially ordered set.
Let S be a set (of states). Then 2S denotes the set of
subsets of S. 〈2S,⊆〉 is a partially ordered set.
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Least Upper Bound

Definition
Let 〈A,v〉 be a partially ordered set and B ⊆ A.

a ∈ A is an upper bound of B iff b v a for all b ∈ B.
a ∈ A is a least upper bound of B iff

a is an upper bound of B, and
for all a′ ∈ A, if a′ is an upper bound of B then a v a′.
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Examples

The subset {b, c} of

b c

a

@@__

does not have a least upper bound.

〈[0,1],≤〉
The least upper bound of (0,0.5) is 0.5.
〈2S,⊆〉
For X ⊆ 2S, its least upper bound is

⋃
X .
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Least Upper Bound

Proposition

Let 〈A,v〉 be a partially ordered set and B ⊆ A. If B has a least
upper bound, then it is unique.

Notation
The least upper bound of B is denoted by tB.
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Monotone Function

Definition
Let 〈A,v〉 be a partially ordered set. A function F : A→ A is
monotone iff for all a, b ∈ A, if a v b then F (a) v F (b).
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Examples

b c

a

@@__

The function F : {a,b, c} → {a,b, c} defined by F (a) = a,
F (b) = a and F (c) = c is monotone.

〈[0,1],≤〉
The function F : [0,1]→ [0,1] defined by F (r) = r

2 is
monotone.
〈2S,⊆〉
Let X ⊆ S. The function F : 2S → 2S defined by
F (Y ) = Y ∩ X is monotone.
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Complete Lattice

Definition
A partially ordered set 〈A,v〉 is a complete lattice if every
subset of A has a least upper bound and a greatest lower
bound.
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Examples

The partially ordered set

b c

a

@@__

is not a complete lattice.

〈[0,1],≤〉 is a complete lattice.
〈2S,⊆〉 is a complete lattice.
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Fixed Points

Definition
Consider the function F : A→ A. Then

a ∈ A is a fixed point of F iff F (a) = a,
a ∈ A is a pre-fixed point of F iff F (a) v a, and
a ∈ A is a post-fixed point of F iff a v F (a).
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Corollary of Knaster-Tarski Fixed Point Theorem

Theorem
Let 〈A,v〉 be a complete lattice. If the function F : A→ A is
monotone, then it has a least fixed point (which is the least
pre-fixed point) and a greatest fixed point (which is the greatest
post-fixed point).

www.cse.yorku.ca/course/4315/ EECS 4315 29 / 40

www.cse.yorku.ca/course/4315/


Bronislaw Knaster (1893–1980)

Recipient of the Nagroda
panstwowa (1963)
Knaster’s fixed point theorem If
the function F : 2S → 2S is
monotone then F has a least
fixed point. Source: Konrad Jacobs
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Alfred Tarski (1901–1983)
Member of the United States
National Academy of Sciences
(1965)
Fellow of the British Academy
(1966)
Member of the Royal Netherlands
Academy of Arts and Science
(1958)
Strongly influenced the
dissertation of Dana Scott (Turing
award winner of 1976)
Tarski’s fixed point theorem If
〈A,v〉 is a complete lattice and
F : A→ A is a monotone function
then the set of fixed points of F is
a complete lattice.

Source: George M. Bergman
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Least Fixed Point

Theorem
Let 〈A,v〉 be a finite complete lattice and F : A→ A a
monotone function. Let

An =

{
t∅ if n = 0
F (An−1) otherwise

Then F (An) = An for some n ∈ N and An is the least fixed point
of F .

Comment
t∅ is the least element of A, that is, t∅ v a for all a ∈ A.
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Model Checking CTL

Definition
The formulas are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃©Φ | ∃(Φ U Φ) | ∀©Φ | ∀(Φ U Φ)

Proposition

Sat(∃(Φ U Ψ)) is the smallest subset T of S such that
Sat(Ψ) ⊆ T and
if s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ then s ∈ T .

Question
How can we use Knaster’s theorem to prove that such a set T
exists?
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Model Checking CTL

Proposition

Sat(∃(Φ U Ψ)) is the smallest subset T of S such that
Sat(Ψ) ⊆ T and
if s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ then s ∈ T .

Definition

The function F : 2S → 2S is defined by

F (T ) = Sat(Ψ) ∪ { s ∈ Sat(Φ) | Post(s) ∩ T 6= ∅ }.

Proposition
The function F is monotone.

Corollary
F has a least pre-fixed point, that is, there exists a smallest set
T such that F (T ) ⊆ T .
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Model Checking CTL

Sat(Φ):
switch (Φ):

true : return S
a : return { s ∈ S | a ∈ `(s) }

Φ ∧Ψ : return Sat(Φ) ∩ Sat(Ψ)
¬Φ : return S \ Sat(Φ)
∃©Φ : return { s ∈ S | Post(s) ∩ Sat(Φ) 6= ∅ }

∃(Φ U Ψ) : T := ∅
while T 6= F (T )

T := F (T )
return T

. . .
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Model checking CTL

Definition

The function G : 2S → 2S is defined by

G(T ) =

{
Sat(Ψ) if T = ∅
T ∪ { s ∈ Sat(Φ) | Post(s) ∩ T 6= ∅ } otherwise

Proposition

For all n ≥ 0, F n(∅) ⊆ F n+1(∅).

Proposition

For all n ≥ 1, Sat(Ψ) ⊆ F n(∅).

Proposition

For all n ≥ 1, F n(∅) = Gn(∅).
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Model Checking CTL

Sat(Φ):
switch (Φ):

. . .
∃(Φ U Ψ) : T := G(∅)

while T 6= G(T )
T := G(T )

return T
. . .
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Model Checking CTL

Sat(Φ):
switch (Φ):

. . .
∃(Φ U Ψ) : E := Sat(Ψ)

T := E
while E 6= ∅

let s′ ∈ E
E := E \ {s′}
for all s ∈ Pre(s′)

if s ∈ Sat(Φ) \ T
E := E ∪ {s}
T := T ∪ {s}

return T
. . .

where Pre(s′) = { s′′ ∈ S | s′′ → s′ }.
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Example

∃(green U purple)

// 1

��

2 //

TT
3

^^

1 7→ {green,∃(green U purple)}
2 7→ {green,∃(green U purple)}
3 7→ {purple, ∃(green U purple)}
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Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example
the textbook of Baier and Katoen for details), we obtain

Theorem
For a transition system TS, with N states and K transitions, and
a CTL formula Φ, the model checking problem TS |= Φ can be
decided in time O((N + K ) · |Φ|).

Theorem
For a transition system TS, with N states and K transitions, and
a LTL formula ϕ, the model checking problem TS |= ϕ can be
decided in time O((N + K ) · 2|ϕ|).

Theorem
If P 6= NP then there exist LTL formulas ϕn whose size is a
polynomial in n, for which equivalent CTL formulas exist, but
not of size polynomial in n.

www.cse.yorku.ca/course/4315/ EECS 4315 40 / 40

www.cse.yorku.ca/course/4315/


Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example
the textbook of Baier and Katoen for details), we obtain

Theorem
For a transition system TS, with N states and K transitions, and
a CTL formula Φ, the model checking problem TS |= Φ can be
decided in time O((N + K ) · |Φ|).

Theorem
For a transition system TS, with N states and K transitions, and
a LTL formula ϕ, the model checking problem TS |= ϕ can be
decided in time O((N + K ) · 2|ϕ|).

Theorem
If P 6= NP then there exist LTL formulas ϕn whose size is a
polynomial in n, for which equivalent CTL formulas exist, but
not of size polynomial in n.

www.cse.yorku.ca/course/4315/ EECS 4315 40 / 40

www.cse.yorku.ca/course/4315/


Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example
the textbook of Baier and Katoen for details), we obtain

Theorem
For a transition system TS, with N states and K transitions, and
a CTL formula Φ, the model checking problem TS |= Φ can be
decided in time O((N + K ) · |Φ|).

Theorem
For a transition system TS, with N states and K transitions, and
a LTL formula ϕ, the model checking problem TS |= ϕ can be
decided in time O((N + K ) · 2|ϕ|).

Theorem
If P 6= NP then there exist LTL formulas ϕn whose size is a
polynomial in n, for which equivalent CTL formulas exist, but
not of size polynomial in n.

www.cse.yorku.ca/course/4315/ EECS 4315 40 / 40

www.cse.yorku.ca/course/4315/

