Computation Tree Logic EECS 4315

www.cse.yorku.ca/course/4315/

э

イロト 不得 とくほと くほとう

The state formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

The path formulas are defined by

$$\varphi ::= \bigcirc \Phi \mid \Phi \cup \Phi$$

 $\langle \Box \rangle \langle \Box \rangle$

www.cse.yorku.ca/course/4315/ EECS 4315

э

프 🖌 🛪 프 🛌

The relation \models is defined by

$$\begin{array}{c} s \models \text{true} \\ s \models a \quad \text{iff} \quad a \in \ell(s) \\ s \models \Phi \land \Psi \quad \text{iff} \quad s \models \Phi \text{ and } s \models \Psi \\ s \models \neg \Phi \quad \text{iff} \quad \text{not}(s \models \Phi) \\ s \models \exists \varphi \quad \text{iff} \quad \exists \pi \in Paths(s) : \pi \models \varphi \\ s \models \forall \varphi \quad \text{iff} \quad \forall \pi \in Paths(s) : \pi \models \varphi \end{array}$$

and

$$\begin{array}{ccc} \pi \models \bigcirc \Phi & \text{iff} & \pi[1] \models \Phi \\ \pi \models \Phi \cup \Psi & \text{iff} & \exists i \ge 0 : \pi[i] \models \Psi \text{ and } \forall 0 \le j < i : \pi[j] \models \Phi \end{array}$$

æ

ヘロト 人間 とくほとくほとう

The *satisfaction set* $Sat(\Phi)$ is defined by

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}.$$

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

Basic idea

Compute $Sat(\Phi)$ by recursion on the structure of Φ .

 $TS \models \Phi \text{ iff } I \subseteq Sat(\Phi).$

Alternative view

Label each state with the subformulas of Φ that it satisfies.

イロト 不得下 不良下 不良下 一度

The state formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

The path formulas are defined by

$$\varphi ::= \bigcirc \Phi \mid \Phi \cup \Phi$$

< 프 → - 프

The state formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

The path formulas are defined by

$$\varphi ::= \bigcirc \Phi \mid \Phi \: \mathsf{U} \: \Phi$$

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

<ロト < 回 > < 回 > < 回 > .

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is Sat(true)?

э

イロト イポト イヨト イヨト

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is Sat(true)?

Answer

Sat(true) = S

Alternative view

Label each state with true.

◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ 三連

æ

Definition

The formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$$

Question

What is *Sat(a)*?

э

<ロト < 回 > < 注 > < 注 > .

Definition

The formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$$

Question

What is Sat(a)?

Answer

$$Sat(a) = \{ s \in S \mid a \in \ell(s) \}$$

Alternative view

Label each state *s* satisfying $a \in \ell(s)$ with *a*.

ヘロト 人間 とくほ とくほとう

green

æ

イロト イロト イヨト イヨト

æ

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\Phi \land \Psi)$?

э

イロト 不得 とくほと くほとう

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\Phi \land \Psi)$?

Answer

 $Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$

Alternative view

Label states, that are labelled with both Φ and $\Psi,$ also with $\Phi \wedge \Psi.$

green \land purple

www.cse.yorku.ca/course/4315/ EECS 4315

æ

green \land purple

æ

<ロト < 回 > < 注 > < 注 > .

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\neg \Phi)$?

3

イロト 不得 とくほと くほとう

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\neg \Phi)$?

Answer

 $Sat(\neg \Phi) = S \setminus Sat(\Phi)$

Alternative view

Label each state, that is not labelled with Φ , with $\neg \Phi$.

э

イロト 不得 とくほと くほとう

\neg (green \land purple)

æ

\neg (green \land purple)

- 1 \mapsto {green, \neg (green \land purple)}
- $2 \quad \mapsto \quad \{green, \neg(green \land purple)\}$
- **3** \mapsto {purple, ¬(green \land purple)}

э

イロト イポト イヨト イヨト

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\exists \bigcirc \Phi)$?

3

イロト イポト イヨト イヨト

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\exists \bigcirc \Phi)$?

Answer

$$Sat(\exists \bigcirc \Phi) = \{ s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset \}$$
 where $Post(s) = \{ s' \in S \mid s \to s' \}.$

Alternative view

Labels those states, that have a direct successor labelled with $\square \oplus \Phi$.

∃⊖green

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

イロト 不得 とくほと くほとう

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\exists (\Phi \cup \Psi))$?

э

イロト イポト イヨト イヨト

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\exists (\Phi \cup \Psi))?$

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

(a) $Sat(\Psi) \subseteq T$ and

(b) if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

イロト イポト イヨト イヨト 一日

Definition

The formulas are defined by

 $\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$

Question

What is $Sat(\exists (\Phi \cup \Psi))$?

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

(a) $Sat(\Psi) \subseteq T$ and

(b) if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

Question

Does such a smallest subset exist?

Crash Course on Order Theory

э

イロト 不得 とくほと くほとう

A partially ordered set is a tuple $\langle A, \sqsubseteq \rangle$ consisting of

- a set A and
- a relation $\sqsubseteq \subseteq A \times A$ satisfying for all a, b, and $c \in A$,

• if
$$a \sqsubseteq b$$
 and $b \sqsubseteq a$ then $a = b$, and

• if $a \sqsubseteq b$ and $b \sqsubseteq c$ then $a \sqsubseteq c$.

۲

depicts the partially ordered set

 $\langle \{a, b, c\}, \{(a, a), (a, b), (a, c), (b, b), (c, c)\} \rangle.$

www.cse.yorku.ca/course/4315/ EECS 4315

э

ヘロト 人間 とくほ とくほとう

۲

depicts the partially ordered set

 $\langle \{a, b, c\}, \{(a, a), (a, b), (a, c), (b, b), (c, c)\} \rangle.$

• $\langle [0, 1], \leq \rangle$ is a partially ordered set.

э

イロト イポト イヨト イヨト

۲

depicts the partially ordered set

 $\langle \{a, b, c\}, \{(a, a), (a, b), (a, c), (b, b), (c, c)\} \rangle.$

- $\langle [0, 1], \leq \rangle$ is a partially ordered set.
- Let S be a set (of states). Then 2^S denotes the set of subsets of S. (2^S, ⊆) is a partially ordered set.

< ∃ >

Let $\langle A, \sqsubseteq \rangle$ be a partially ordered set and $B \subseteq A$.

- $a \in A$ is an *upper bound* of B iff $b \sqsubseteq a$ for all $b \in B$.
- $a \in A$ is a least upper bound of B iff
 - a is an upper bound of B, and
 - for all $a' \in A$, if a' is an upper bound of B then $a \sqsubseteq a'$.

• The subset {*b*, *c*} of

does not have a least upper bound.

 $\langle \Box \rangle \langle \Box \rangle$

→ E > < E >

æ

• The subset {*b*, *c*} of

does not have a least upper bound.

• $\langle [0, 1], \leq \rangle$ The least upper bound of (0, 0.5) is 0.5.

< ∃⇒

• The subset {*b*, *c*} of

does not have a least upper bound.

- $\langle [0, 1], \leq \rangle$ The least upper bound of (0, 0.5) is 0.5.
- $\langle 2^S, \subseteq \rangle$ For $X \subseteq 2^S$, its least upper bound is $\bigcup X$.

Proposition

Let $\langle A, \sqsubseteq \rangle$ be a partially ordered set and $B \subseteq A$. If *B* has a least upper bound, then it is unique.

Notation

The least upper bound of *B* is denoted by $\Box B$.

프 🖌 🛪 프 🛌

< D > < P >

Definition

Let $\langle A, \sqsubseteq \rangle$ be a partially ordered set. A function $F : A \to A$ is *monotone* iff for all $a, b \in A$, if $a \sqsubseteq b$ then $F(a) \sqsubseteq F(b)$.

۲

The function $F : \{a, b, c\} \rightarrow \{a, b, c\}$ defined by F(a) = a, F(b) = a and F(c) = c is monotone.

э

۲

The function $F : \{a, b, c\} \rightarrow \{a, b, c\}$ defined by F(a) = a, F(b) = a and F(c) = c is monotone.

• $\langle [0,1], \leq \rangle$ The function $F : [0,1] \rightarrow [0,1]$ defined by $F(r) = \frac{r}{2}$ is monotone.

3

۲

The function $F : \{a, b, c\} \rightarrow \{a, b, c\}$ defined by F(a) = a, F(b) = a and F(c) = c is monotone.

• $\langle [0,1], \leq \rangle$ The function $F : [0,1] \rightarrow [0,1]$ defined by $F(r) = \frac{r}{2}$ is monotone.

•
$$\langle 2^S, \subseteq \rangle$$

Let $X \subseteq S$. The function $F : 2^S \to 2^S$ defined by $F(Y) = Y \cap X$ is monotone.

3

Definition

A partially ordered set $\langle A, \sqsubseteq \rangle$ is a *complete lattice* if every subset of *A* has a least upper bound and a greatest lower bound.

프 > - - 프 > - -

• The partially ordered set

is not a complete lattice.

The partially ordered set

is not a complete lattice.

• $\langle [0,1], \leq \rangle$ is a complete lattice.

→ E > < E >

The partially ordered set

is not a complete lattice.

- $\langle [0,1], \leq \rangle$ is a complete lattice.
- $\langle 2^{\mathcal{S}}, \subseteq \rangle$ is a complete lattice.

 $\equiv \rightarrow$

Definition

Consider the function $F : A \rightarrow A$. Then

- $a \in A$ is a fixed point of F iff F(a) = a,
- $a \in A$ is a *pre-fixed point* of *F* iff $F(a) \sqsubseteq a$, and
- $a \in A$ is a post-fixed point of F iff $a \sqsubseteq F(a)$.

프 🖌 🛪 프 🛌

Corollary of Knaster-Tarski Fixed Point Theorem

Theorem

Let $\langle A, \sqsubseteq \rangle$ be a complete lattice. If the function $F : A \to A$ is monotone, then it has a least fixed point (which is the least pre-fixed point) and a greatest fixed point (which is the greatest post-fixed point).

Bronislaw Knaster (1893–1980)

- Recipient of the Nagroda panstwowa (1963)
- Knaster's fixed point theorem If the function F : 2^S → 2^S is monotone then F has a least fixed point.

Source: Konrad Jacobs

Alfred Tarski (1901–1983)

- Member of the United States National Academy of Sciences (1965)
- Fellow of the British Academy (1966)
- Member of the Royal Netherlands Academy of Arts and Science (1958)
- Strongly influenced the dissertation of Dana Scott (Turing award winner of 1976)
- Tarski's fixed point theorem If
 ⟨A, ⊑⟩ is a complete lattice and
 F : A → A is a monotone function
 then the set of fixed points of F is
 a complete lattice.

Source: George M. Bergman

Theorem

Let $\langle A, \sqsubseteq \rangle$ be a finite complete lattice and $F : A \to A$ a monotone function. Let

$$\mathsf{A}_n = \left\{ egin{array}{cc} egin{array}{cc} eta & \textit{if } n = 0 \ F(\mathsf{A}_{n-1}) & \textit{otherwise} \end{array}
ight.$$

Then $F(A_n) = A_n$ for some $n \in \mathbb{N}$ and A_n is the least fixed point of F.

Comment

 $\sqcup \emptyset$ is the least element of *A*, that is, $\sqcup \emptyset \sqsubseteq a$ for all $a \in A$.

Definition

The formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$$

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- $Sat(\Psi) \subseteq T$ and
- if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

э

Definition

The formulas are defined by

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Phi) \mid \forall \bigcirc \Phi \mid \forall (\Phi \cup \Phi)$$

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- $Sat(\Psi) \subseteq T$ and
- if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

Question

How can we use Knaster's theorem to prove that such a set *T* exists?

프 🖌 🛪 프 🛌

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- $Sat(\Psi) \subseteq T$ and
- if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

э

イロト 不得 とくほと くほとう

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- $Sat(\Psi) \subseteq T$ and
- if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

Definition

The function $F: 2^S \rightarrow 2^S$ is defined by

$$F(T) = Sat(\Psi) \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \}.$$

Э

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- $Sat(\Psi) \subseteq T$ and
- if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

Definition

The function $F: 2^S \rightarrow 2^S$ is defined by

$$F(T) = Sat(\Psi) \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \}.$$

Proposition

The function *F* is monotone.

프 > < 프 > - 프

Proposition

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- $Sat(\Psi) \subseteq T$ and
- if $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ then $s \in T$.

Definition

The function $F: 2^S \rightarrow 2^S$ is defined by

$$F(T) = Sat(\Psi) \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \}.$$

Proposition

The function *F* is monotone.

Corollary

F has a least pre-fixed point, that is, there exists a smallest set *T* such that $F(T) \subseteq T$.

. . .

 $Sat(\Phi)$: switch (Φ) : true : return S a : return $\{s \in S \mid a \in \ell(s)\}$ $\Phi \land \Psi$: return $Sat(\Phi) \cap Sat(\Psi)$ $\neg \Phi$: return $S \setminus Sat(\Phi)$ $\exists \bigcirc \Phi$: return { $s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset$ } $\exists (\Phi \cup \Psi) : T := \emptyset$ while $T \neq F(T)$ T := F(T)return T

イロト イヨト イヨト

Definition

The function $G: 2^S \rightarrow 2^S$ is defined by

$$G(T) = \begin{cases} Sat(\Psi) & \text{if } T = \emptyset \\ T \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \} & \text{otherwise} \end{cases}$$

크

イロト 不得 とくほ とくほ とう

Definition

The function $G: 2^S \rightarrow 2^S$ is defined by

$$G(T) = \begin{cases} Sat(\Psi) & \text{if } T = \emptyset \\ T \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \} & \text{otherwise} \end{cases}$$

Proposition

For all $n \ge 0$, $F^n(\emptyset) \subseteq F^{n+1}(\emptyset)$.

3

イロト 不得 とくほと くほとう

Definition

The function $G: 2^S \rightarrow 2^S$ is defined by

$$G(T) = \begin{cases} Sat(\Psi) & \text{if } T = \emptyset \\ T \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \} & \text{otherwise} \end{cases}$$

Proposition

For all $n \ge 0$, $F^n(\emptyset) \subseteq F^{n+1}(\emptyset)$.

Proposition

For all $n \ge 1$, $Sat(\Psi) \subseteq F^n(\emptyset)$.

Definition

The function $G: 2^S \rightarrow 2^S$ is defined by

$$G(T) = \begin{cases} Sat(\Psi) & \text{if } T = \emptyset \\ T \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \} & \text{otherwise} \end{cases}$$

Proposition

For all $n \ge 0$, $F^n(\emptyset) \subseteq F^{n+1}(\emptyset)$.

Proposition

For all $n \ge 1$, $Sat(\Psi) \subseteq F^n(\emptyset)$.

Proposition

For all $n \ge 1$, $F^n(\emptyset) = G^n(\emptyset)$.

www.cse.yorku.ca/course/4315/

EECS 4315

<ロト < 同ト < 回ト < 回ト</p>

. . .

Sat(
$$\Phi$$
):
switch (Φ):
 $\exists (\Phi \cup \Psi) : T := G(\emptyset)$
while $T \neq G(T)$
 $T := G(T)$
return T

æ

ヘロト 人間 とくほとくほとう

 $Sat(\Phi)$: switch (Φ) : . . . $\exists (\Phi \cup \Psi) : E := Sat(\Psi)$ T := Ewhile $E \neq \emptyset$ let $s' \in E$ $E := E \setminus \{s'\}$ for all $s \in Pre(s')$ if $s \in Sat(\Phi) \setminus T$ $E := E \cup \{s\}$ $T := T \cup \{s\}$ return T

where $\textit{Pre}(\textit{s}') = \{ \textit{s}'' \in \textit{S} \mid \textit{s}'' \rightarrow \textit{s}' \}.$

イロト イヨト イヨト

∃(green U purple)

æ

ヘロト 人間 とくほとくほとう

∃(green U purple)

- 1 \mapsto {green, \exists (green U purple)}
- $2 \quad \mapsto \quad \{green, \exists (green \ U \ purple)\}$
- $3 \mapsto \{\text{purple}, \exists (\text{green U purple})\}$

э

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula Φ , the model checking problem *TS* $\models \Phi$ can be decided in time $\mathcal{O}((N + K) \cdot |\Phi|)$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula Φ , the model checking problem *TS* $\models \Phi$ can be decided in time $\mathcal{O}((N + K) \cdot |\Phi|)$.

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a LTL formula φ , the model checking problem $TS \models \varphi$ can be decided in time $\mathcal{O}((N + K) \cdot 2^{|\varphi|})$.

イロト イ理ト イヨト

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula Φ , the model checking problem *TS* $\models \Phi$ can be decided in time $\mathcal{O}((N + K) \cdot |\Phi|)$.

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a LTL formula φ , the model checking problem $TS \models \varphi$ can be decided in time $\mathcal{O}((N + K) \cdot 2^{|\varphi|})$.

Theorem

If $P \neq NP$ then there exist LTL formulas φ_n whose size is a polynomial in *n*, for which equivalent CTL formulas exist, but not of size polynomial in *n*.