Computation Tree Logic EECS 4315

www.cse.yorku.ca/course/4315/

Syntax of CTL

Definition

The state formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \varphi \mid \forall \varphi
$$

The path formulas are defined by

$$
\varphi::=\bigcirc \Phi \mid \Phi \cup \Phi
$$

Semantics of CTL

Definition

The relation \vDash is defined by

$$
\begin{array}{rlrl}
s & =\text { true } & & \\
s \models a & \text { iff } & a \in \ell(s) \\
s \models \Phi \wedge \Psi & \text { iff } & s \models \Phi \text { and } s \models \Psi \\
s \models \neg \Phi & \text { iff } & \operatorname{not}(s \models \Phi) \\
s \models \exists \varphi & \text { iff } & \exists \pi \in \operatorname{Paths}(s): \pi \models \varphi \\
s & \models \forall \varphi & \text { iff } & \forall \pi \in \operatorname{Paths}(s): \pi \models \varphi
\end{array}
$$

and

$$
\begin{array}{rll}
\pi \models \bigcirc \Phi & \text { iff } & \pi[1] \models \Phi \\
\pi \models \Phi \cup \Psi & \text { iff } & \exists i \geq 0: \pi[i] \models \Psi \text { and } \forall 0 \leq j<i: \pi[j] \models \Phi
\end{array}
$$

Satisfaction Set

Definition
The satisfaction set Sat (Φ) is defined by

$$
\operatorname{Sat}(\Phi)=\{s \in S \mid s \models \Phi\} .
$$

Model checking CTL

Basic idea

Compute $\operatorname{Sat}(\Phi)$ by recursion on the structure of Φ.
$T S \models \Phi$ iff $I \subseteq \operatorname{Sat}(\Phi)$.
Alternative view
Label each state with the subformulas of Φ that it satisfies.

Model checking CTL

Definition

The state formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \varphi \mid \forall \varphi
$$

The path formulas are defined by

$$
\varphi::=\bigcirc \Phi \mid \Phi \cup \Phi
$$

Model checking CTL

Definition

The state formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \varphi \mid \forall \varphi
$$

The path formulas are defined by

$$
\varphi::=\bigcirc \Phi \mid \Phi \cup \Phi
$$

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is Sat(true)?

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is Sat(true)?

Answer
 Sat(true) $=S$

Alternative view

Label each state with true.

Example

true

Example

true

$1 \mapsto$ \{true $\}$
$2 \mapsto\{$ true $\}$
$3 \mapsto\{$ true $\}$

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(a)$?

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(a)$?

Answer

$\operatorname{Sat}(a)=\{s \in S \mid a \in \ell(s)\}$

Alternative view

Label each state s satisfying $a \in \ell(s)$ with a.

Example

green

Example

green

$1 \mapsto$ \{green\}
$2 \mapsto$ \{green $\}$
$3 \mapsto \emptyset$

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(\Phi \wedge \Psi)$?

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(\Phi \wedge \Psi)$?

Answer

$\operatorname{Sat}(\Phi \wedge \Psi)=\operatorname{Sat}(\Phi) \cap \operatorname{Sat}(\Psi)$

Alternative view

Label states, that are labelled with both Φ and Ψ, also with $\Phi \wedge \psi$.

Example

green \wedge purple

Example

green \wedge purple

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(\neg \Phi)$?

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(\neg \Phi)$?

Answer

$\operatorname{Sat}(\neg \Phi)=S \backslash \operatorname{Sat}(\Phi)$

Alternative view

Label each state, that is not labelled with Φ, with $\neg \Phi$.

Example

\neg (green \wedge purple)

Example

\neg (green \wedge purple)

$1 \mapsto\{$ green, $\neg($ green \wedge purple $)\}$
$2 \mapsto\{$ green, \neg (green \wedge purple) $\}$
$3 \mapsto\{$ purple, $\neg($ green \wedge purple $)\}$

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc \Phi)$?

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc \Phi)$?

Answer

$\operatorname{Sat}(\exists \bigcirc \Phi)=\{s \in S \mid \operatorname{Post}(s) \cap \operatorname{Sat}(\Phi) \neq \emptyset\}$ where $\operatorname{Post}(s)=\left\{s^{\prime} \in S \mid s \rightarrow s^{\prime}\right\}$.

Alternative view

Labels those states, that have a direct successor labelled with Φ, also with $\exists \bigcirc \Phi$.

Example

$\exists \bigcirc$ green

Example

ヨ〇green

$1 \mapsto$ \｛green，\exists 〇 ${ }^{\text {green }}$ \}
$2 \mapsto$ \｛green，ヨ〇green\}
$3 \mapsto\{\exists \bigcirc$ green $\}$

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question
What is $\operatorname{Sat}(\exists(\Phi \cup \Psi))$?

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\text { true }|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question
What is $\operatorname{Sat}(\exists(\Phi \cup \Psi))$?

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that
(a) $\operatorname{Sat}(\Psi) \subseteq T$ and
(b) if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Model checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Question
What is $\operatorname{Sat}(\exists(\Phi \cup \Psi))$?

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that
(a) $\operatorname{Sat}(\Psi) \subseteq T$ and
(b) if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Question

Does such a smallest subset exist?

Crash Course on Order Theory

Partially Ordered Set

Definition

A partially ordered set is a tuple $\langle A, \sqsubseteq\rangle$ consisting of

- a set A and
- a relation $\sqsubseteq \subseteq A \times A$ satisfying for all a, b, and $c \in A$,
- $a \sqsubseteq a$,
- if $a \sqsubseteq b$ and $b \sqsubseteq a$ then $a=b$, and
- if $a \sqsubseteq b$ and $b \sqsubseteq c$ then $a \sqsubseteq c$.

Examples

depicts the partially ordered set

$$
\langle\{a, b, c\},\{(a, a),(a, b),(a, c),(b, b),(c, c)\}\rangle
$$

Examples

depicts the partially ordered set

$$
\langle\{a, b, c\},\{(a, a),(a, b),(a, c),(b, b),(c, c)\}\rangle
$$

- $\langle[0,1], \leq\rangle$ is a partially ordered set.

Examples

depicts the partially ordered set

$$
\langle\{a, b, c\},\{(a, a),(a, b),(a, c),(b, b),(c, c)\}\rangle
$$

- $\langle[0,1], \leq\rangle$ is a partially ordered set.
- Let S be a set (of states). Then 2^{S} denotes the set of subsets of $S .\left\langle 2^{S}, \subseteq\right\rangle$ is a partially ordered set.

Least Upper Bound

Definition

Let $\langle A, \sqsubseteq\rangle$ be a partially ordered set and $B \subseteq A$.

- $a \in A$ is an upper bound of B iff $b \sqsubseteq a$ for all $b \in B$.
- $a \in A$ is a least upper bound of B iff
- a is an upper bound of B, and
- for all $a^{\prime} \in A$, if a^{\prime} is an upper bound of B then $a \sqsubseteq a^{\prime}$.

Examples

- The subset $\{b, c\}$ of

does not have a least upper bound.

Examples

- The subset $\{b, c\}$ of

does not have a least upper bound.
- $\langle[0,1], \leq\rangle$

The least upper bound of $(0,0.5)$ is 0.5 .

Examples

- The subset $\{b, c\}$ of

does not have a least upper bound.
- $\langle[0,1], \leq\rangle$

The least upper bound of $(0,0.5)$ is 0.5 .

- $\left\langle 2^{s}, \subseteq\right\rangle$

For $X \subseteq 2^{S}$, its least upper bound is $\bigcup X$.

Least Upper Bound

Proposition

Let $\langle A, \sqsubseteq\rangle$ be a partially ordered set and $B \subseteq A$. If B has a least upper bound, then it is unique.

Notation

The least upper bound of B is denoted by $\sqcup B$.

Monotone Function

Definition

Let $\langle A, \sqsubseteq\rangle$ be a partially ordered set. A function $F: A \rightarrow A$ is monotone iff for all $a, b \in A$, if $a \sqsubseteq b$ then $F(a) \sqsubseteq F(b)$.

Examples

The function $F:\{a, b, c\} \rightarrow\{a, b, c\}$ defined by $F(a)=a$, $F(b)=a$ and $F(c)=c$ is monotone.

Examples

The function $F:\{a, b, c\} \rightarrow\{a, b, c\}$ defined by $F(a)=a$, $F(b)=a$ and $F(c)=c$ is monotone.

- $\langle[0,1], \leq\rangle$

The function $F:[0,1] \rightarrow[0,1]$ defined by $F(r)=\frac{r}{2}$ is monotone.

Examples

The function $F:\{a, b, c\} \rightarrow\{a, b, c\}$ defined by $F(a)=a$, $F(b)=a$ and $F(c)=c$ is monotone.

- $\langle[0,1], \leq\rangle$

The function $F:[0,1] \rightarrow[0,1]$ defined by $F(r)=\frac{r}{2}$ is monotone.

- $\left\langle 2^{S}, \subseteq\right\rangle$

Let $X \subseteq S$. The function $F: 2^{S} \rightarrow 2^{S}$ defined by $F(Y)=Y \cap X$ is monotone.

Complete Lattice

Definition
A partially ordered set $\langle\boldsymbol{A}, \sqsubseteq\rangle$ is a complete lattice if every subset of A has a least upper bound and a greatest lower bound.

Examples

- The partially ordered set

is not a complete lattice.

Examples

- The partially ordered set

is not a complete lattice.
- $\langle[0,1], \leq\rangle$ is a complete lattice.

Examples

- The partially ordered set

is not a complete lattice.
- $\langle[0,1], \leq\rangle$ is a complete lattice.
- $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice.

Fixed Points

Definition

Consider the function $F: A \rightarrow A$. Then

- $a \in A$ is a fixed point of F iff $F(a)=a$,
- $a \in A$ is a pre-fixed point of F iff $F(a) \sqsubseteq a$, and
- $a \in A$ is a post-fixed point of F iff $a \sqsubseteq F(a)$.

Corollary of Knaster-Tarski Fixed Point Theorem

Theorem

Let $\langle A, \sqsubseteq\rangle$ be a complete lattice. If the function $F: A \rightarrow A$ is monotone, then it has a least fixed point (which is the least pre-fixed point) and a greatest fixed point (which is the greatest post-fixed point).

Bronislaw Knaster (1893-1980)

- Recipient of the Nagroda panstwowa (1963)
- Knaster's fixed point theorem If the function $F: 2^{S} \rightarrow 2^{S}$ is monotone then F has a least fixed point.

Source: Konrad Jacobs

Alfred Tarski (1901-1983)

- Member of the United States National Academy of Sciences (1965)
- Fellow of the British Academy (1966)
- Member of the Royal Netherlands Academy of Arts and Science (1958)
- Strongly influenced the dissertation of Dana Scott (Turing award winner of 1976)

Source: George M. Bergman

- Tarski's fixed point theorem If $\langle A, \sqsubseteq\rangle$ is a complete lattice and $F: A \rightarrow A$ is a monotone function then the set of fixed points of F is a complete lattice.

Least Fixed Point

Theorem

Let $\langle A, \sqsubseteq\rangle$ be a finite complete lattice and $F: A \rightarrow A$ a monotone function. Let

$$
A_{n}= \begin{cases}\sqcup \emptyset & \text { if } n=0 \\ F\left(A_{n-1}\right) & \text { otherwise }\end{cases}
$$

Then $F\left(A_{n}\right)=A_{n}$ for some $n \in \mathbb{N}$ and A_{n} is the least fixed point of F.

Comment

$\sqcup \emptyset$ is the least element of A, that is, $\sqcup \emptyset \sqsubseteq a$ for all $a \in A$.

Model Checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that

- $\operatorname{Sat}(\Psi) \subseteq T$ and
- if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Model Checking CTL

Definition

The formulas are defined by

$$
\Phi::=\operatorname{true}|a| \Phi \wedge \Phi|\neg \Phi| \exists \bigcirc \Phi|\exists(\Phi \cup \Phi)| \forall \bigcirc \Phi \mid \forall(\Phi \cup \Phi)
$$

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that

- $\operatorname{Sat}(\Psi) \subseteq T$ and
- if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Question

How can we use Knaster's theorem to prove that such a set T exists?

Model Checking CTL

Proposition
$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that

- $\operatorname{Sat}(\Psi) \subseteq T$ and
- if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Model Checking CTL

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that

- $\operatorname{Sat}(\Psi) \subseteq T$ and
- if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(\Psi) \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\}
$$

Model Checking CTL

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that

- $\operatorname{Sat}(\Psi) \subseteq T$ and
- if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(\Psi) \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\}
$$

Proposition

The function F is monotone.

Model Checking CTL

Proposition

$\operatorname{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S such that

- $\operatorname{Sat}(\Psi) \subseteq T$ and
- if $s \in \operatorname{Sat}(\Phi)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $s \in T$.

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(\Psi) \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\}
$$

Proposition

The function F is monotone.
Corollary
F has a least pre-fixed point, that is, there exists a smallest set
T such that $F(T) \subseteq T$.

Model Checking CTL

Sat(Ф): switch (Φ):
true : return S
a : return $\{s \in S \mid a \in \ell(s)\}$
$\Phi \wedge \Psi: \quad$ return $\operatorname{Sat}(\Phi) \cap \operatorname{Sat}(\Psi)$
$\neg \Phi$: return $S \backslash \operatorname{Sat}(\Phi)$
$\exists \bigcirc \Phi:$ return $\{s \in S \mid \operatorname{Post}(s) \cap \operatorname{Sat}(\Phi) \neq \emptyset\}$
$\exists(\Phi \cup \Psi) \quad: \quad T:=\emptyset$
while $T \neq F(T)$

$$
T:=F(T)
$$

return T

Model checking CTL

Definition

The function $G: 2^{S} \rightarrow 2^{S}$ is defined by

$$
G(T)= \begin{cases}\operatorname{Sat}(\Psi) & \text { if } T=\emptyset \\ T \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\} & \text { otherwise }\end{cases}
$$

Model checking CTL

Definition

The function $G: 2^{S} \rightarrow 2^{S}$ is defined by

$$
G(T)= \begin{cases}\operatorname{Sat}(\Psi) & \text { if } T=\emptyset \\ T \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\} & \text { otherwise }\end{cases}
$$

Proposition

For all $n \geq 0, F^{n}(\emptyset) \subseteq F^{n+1}(\emptyset)$.

Model checking CTL

Definition

The function $G: 2^{S} \rightarrow 2^{S}$ is defined by

$$
G(T)= \begin{cases}\operatorname{Sat}(\Psi) & \text { if } T=\emptyset \\ T \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\} & \text { otherwise }\end{cases}
$$

Proposition

For all $n \geq 0, F^{n}(\emptyset) \subseteq F^{n+1}(\emptyset)$.

Proposition

For all $n \geq 1$, Sat $(\Psi) \subseteq F^{n}(\emptyset)$.

Model checking CTL

Definition

The function $G: 2^{S} \rightarrow 2^{S}$ is defined by

$$
G(T)= \begin{cases}\operatorname{Sat}(\Psi) & \text { if } T=\emptyset \\ T \cup\{s \in \operatorname{Sat}(\Phi) \mid \operatorname{Post}(s) \cap T \neq \emptyset\} & \text { otherwise }\end{cases}
$$

Proposition

For all $n \geq 0, F^{n}(\emptyset) \subseteq F^{n+1}(\emptyset)$.

Proposition

For all $n \geq 1, \operatorname{Sat}(\Psi) \subseteq F^{n}(\emptyset)$.

Proposition

For all $n \geq 1, F^{n}(\emptyset)=G^{n}(\emptyset)$.

Model Checking CTL

Sat(Ф): switch (Φ):

$$
\begin{array}{ll}
\exists(\Phi \cup \Psi): & T:=G(\emptyset) \\
& \text { while } T \neq G(T) \\
& T:=G(T) \\
& \text { return } T
\end{array}
$$

Model Checking CTL

Sat(Φ): switch (Φ):

$$
\begin{array}{ll}
\exists(\Phi \cup \Psi): & E:=\operatorname{Sat}(\Psi) \\
& T:=E \\
& \text { while } E \neq \emptyset \\
& \text { let } s^{\prime} \in E \\
& E:=E \backslash\left\{s^{\prime}\right\} \\
& \text { for all } s \in \operatorname{Pre}\left(s^{\prime}\right) \\
& \text { if } s \in \operatorname{Sat}(\Phi) \backslash T \\
& E:=E \cup\{s\} \\
& T:=T \cup\{s\}
\end{array}
$$

return T
where $\operatorname{Pre}\left(s^{\prime}\right)=\left\{s^{\prime \prime} \in S \mid s^{\prime \prime} \rightarrow s^{\prime}\right\}$.

Example

\exists (green U purple)

Example

\exists (green U purple)

$1 \mapsto$ \{green, \exists (green U purple) $\}$
$2 \mapsto$ \{green, \exists (green U purple) $\}$
$3 \mapsto\{$ purple, \exists (green U purple) $\}$

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula Φ, the model checking problem $T S \models \Phi$ can be decided in time $\mathcal{O}((N+K) \cdot|\Phi|)$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula Φ, the model checking problem $T S \models \Phi$ can be decided in time $\mathcal{O}((N+K) \cdot|\Phi|)$.

Theorem

For a transition system $T S$, with N states and K transitions, and a LTL formula φ, the model checking problem $T S \models \varphi$ can be decided in time $\mathcal{O}\left((N+K) \cdot 2^{|\varphi|}\right)$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula Φ, the model checking problem $T S \models \Phi$ can be decided in time $\mathcal{O}((N+K) \cdot|\Phi|)$.

Theorem

For a transition system $T S$, with N states and K transitions, and a LTL formula φ, the model checking problem $T S \models \varphi$ can be decided in time $\mathcal{O}\left((N+K) \cdot 2^{|\varphi|}\right)$.

Theorem

If $P \neq N P$ then there exist LTL formulas φ_{n} whose size is a polynomial in n, for which equivalent CTL formulas exist, but not of size polynomial in n.

