Binary Decision Diagrams EECS 4315

www.cse.yorku.ca/course/4315/

www.cse.yorku.ca/course/4315/ EECS 4315

э

イロト 不得 とくほ とくほとう

 Explicit: states and transitions are represented explicitly.
Drawback: the state space of interesting systems is usually too large to represent explicitly. • Explicit: states and transitions are represented explicitly.

Drawback: the state space of interesting systems is usually too large to represent explicitly.

• *Symbolic*: (sets of) states and (sets of) transitions are represented symbolically.

Key idea: exploit the fact that the state space of most systems is not random.

< ∃ >

• Explicit: states and transitions are represented explicitly.

Drawback: the state space of interesting systems is usually too large to represent explicitly.

• *Symbolic*: (sets of) states and (sets of) transitions are represented symbolically.

Key idea: exploit the fact that the state space of most systems is not random.

We focus on one symbolic approach:

BDD based

(* E) * E)

Cook's theorem

Satisfiability checking of Boolean expressions is NP-complete.

э

< ロ > < 同 > < 回 > < 回 > .

- recipient of the ACM Turing award (1982)
- fellow of the Royal Society of London (1998)
- fellow of the Royal Society of Canada (1984)
- member of the National Academy of Sciences (1985)
- member of the American Academy of Arts and Sciences (1986)

Source: Jiri Janicek

Theorem

Tautology checking of Boolean expressions is co-NP-complete.

э

ヘロト 人間 ト 人臣 ト 人臣 ト

Definition

A literal is a variable or its negation.

э

<ロト < 回 > < 注 > < 注 > .

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *disjunctive normal form (DNF)* if it is a disjunction of conjunctions of literals.

프 에 세 프 어

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *disjunctive normal form (DNF)* if it is a disjunction of conjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in DNF.

프 에 세 프 어

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *disjunctive normal form (DNF)* if it is a disjunction of conjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in DNF.

Proposition

Satisfiability checking of Boolean expressions in DNF is in P.

(4) E > (4) E > (1)

Definition

A *literal* is a variable or its negation.

Definition

A Boolean expression is in *disjunctive normal form (DNF)* if it is a disjunction of conjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in DNF.

Proposition

Satisfiability checking of Boolean expressions in DNF is in P.

Proposition

Tautology checking of Boolean expressions in DNF is co-NP-complete.

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *conjunctive normal form (CNF)* if it is a conjunction of disjunctions of literals.

프 에 세 프 어

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *conjunctive normal form (CNF)* if it is a conjunction of disjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in CNF.

프 + + 프 + -

Definition

A *literal* is a variable or its negation.

Definition

A Boolean expression is in *conjunctive normal form (CNF)* if it is a conjunction of disjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in CNF.

Proposition

Satisfiability checking of Boolean expressions in CNF is NP-complete.

프 () () 프 () (

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in *conjunctive normal form (CNF)* if it is a conjunction of disjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in CNF.

Proposition

Satisfiability checking of Boolean expressions in CNF is NP-complete.

Proposition

Tautology checking of Boolean expressions in CNF is in P.

Notation		
0	:	false
1	:	true
$x \to t_1, t_0$:	$(x \wedge t_1) \lor (\neg x \wedge t_0)$

Definition

The set of Boolean expressions in *if-then-else normal form* (*INF*) is defined by

$$t ::= \mathbf{0} \mid \mathbf{1} \mid \mathbf{x} \to t, t$$

э

* E > * E >

Question

Give a Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

< 프 → - 프

< D > < P >

Question

Give a Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

Answer

$$\begin{array}{rcl}t &=& x_1 \rightarrow t_1, t_0\\t_0 &=& x_2 \rightarrow t_{01}, t_{00}\\t_1 &=& x_2 \rightarrow t_{11}, t_{10}\\t_{00} &=& x_3 \rightarrow 0, 0\\t_{01} &=& x_3 \rightarrow 0, 0\\t_{10} &=& x_3 \rightarrow 1, 1\\t_{11} &=& x_3 \rightarrow 1, 0\end{array}$$

э

(E) < E) </p>

Shannon's expansion theorem

For every Boolean expression t and variable x,

$$t = x \rightarrow t[1/x], t[0/x].$$

Proposition

Any Boolean expression is equivalent to one in INF.

 $\equiv \rightarrow$

Boolean expressions in INF can be viewed as binary trees known as *decision trees*.

Two types of leaves: 0 and 1

One type of internal nodes: $x \rightarrow t_1, t_0$

≣ ▶

Decision trees

Question

Draw the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Decision trees

Question

Draw the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

Answer

If-then-else normal form

$$\begin{array}{rcl}t &=& x_1 \to t_1, t_0\\t_0 &=& x_2 \to t_{01}, t_{00}\\t_1 &=& x_2 \to t_{11}, t_{10}\\t_{00} &=& x_3 \to 0, 0\\t_{01} &=& x_3 \to 0, 0\\t_{10} &=& x_3 \to 1, 1\\t_{11} &=& x_3 \to 1, 0\end{array}$$

Question

Identify all equal subexpressions.

э

トメヨト

If-then-else normal form

$$\begin{array}{rcl}t &=& x_1 \to t_1, t_0\\t_0 &=& x_2 \to t_{01}, t_{00}\\t_1 &=& x_2 \to t_{11}, t_{10}\\t_{00} &=& x_3 \to 0, 0\\t_{01} &=& x_3 \to 0, 0\\t_{10} &=& x_3 \to 1, 1\\t_{11} &=& x_3 \to 1, 0\end{array}$$

Question

Identify all equal subexpressions.

Answer

There are multiple occurrences of 0 and 1. Furthermore, t_{00} and t_{01} are equal.

ъ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Binary decision diagram

Question

Identify the equal subtrees in the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

Binary decision diagram

Question

Identify the equal subtrees in the decision tree for the Boolean expression in INF equivalent to $x_1 \land (\neg x_2 \lor x_3)$.

Answer

Definition

A *binary decision diagram (BDD)* is a rooted directed acyclic graph where

- two (external) nodes where have out-degree zero and are labelled 0 and 1,
- and all other (internal) nodes have out-degree two, with one outgoing edge called the low edge and the other called the high edge, and are labelled with a variable.

Notation

Let *u* be an internal node.

var(u) denotes the variable with which node u is labelled. low(u) denotes the successor of node u along its low edge (corresponding to the case that value of var(u) is low, that is, 0). high(u) denotes the successor of node u along its high edge (corresponding to the case that value of var(u) is high, that is, 1).

Ordered binary decision diagrams

Definition

A BDD is *ordered* if on all paths through the graph the variables respect a given linear order $x_1 < x_2 < \cdots < x_n$.

Definition

An ordered BDD is reduced if

• *unique*: no two distinct internal nodes *u* and *v* have the same variable, low- and high-successor, that is,

if var(v) = var(u), low(v) = low(u), and high(v) = high(u)then u = v.

• *non-redundant*: no internal node *u* has identical low- and high-successor, that is,

 $low(u) \neq high(u).$

Reduced ordered binary decision diagrams

Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?

프 🖌 🛪 프 🛌

Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?

Answer

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lemma

For a Boolean expression *t* with variables $x_1, x_2, ..., x_n$ and a linear order $x_1 < x_2 < \cdots < x_n$, there exists a unique reduced ordered BDD which is equivalent to *t*.

For the remainder, we restrict our attention to reduced ordered BDDs and simply call them BDDs.

Randal Bryant

- member of the National Academy of Engineering (2003),
- recipient of the Paris Kanellakis Theory and Practice Award (1997)
- recipient of the IEEE Emanuel R. Piore Award (2007)
- his paper on BDDs is one of the most cited computer science papers (more than 9660 citations)

Source: Randal Bryant

Proposition

Satisfiability checking of BDDs is constant time.

Proposition

Tautology checking of BDDs is constant time.

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Question

Draw the BDD corresponding to

$$(x_1 \wedge x_2) \vee (x_3 \wedge x_4) \vee (x_5 \wedge x_6)$$

for the variable ordering

$$x_1 < x_2 < x_3 < x_4 < x_5 < x_6$$

< 프 → - 프

Question

Draw the BDD corresponding to

$$(x_1 \wedge x_2) \vee (x_3 \wedge x_4) \vee (x_5 \wedge x_6)$$

for the variable ordering

$$x_1 < x_4 < x_5 < x_2 < x_3 < x_6$$

< 프 → - 프

Theorem

Deciding whether a given variable order is optimal is NP-hard.

Heuristics are used to find good variable orderings. For more details, see, for example,

I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. 2000.

< ∃ >