
Micriµm
949 Crestview Circle
Weston, FL 33327

U.S.A.
www.Micrium.com

µC/OS-II
The Real-Time kernel

V2.83
Release Notes

© Copyright 2006, Micriµm

All Rights reserved

Phone: +1 954 217 2036 FAX: +1 954 217 2037

 1 of 77

http://www.micrium.com/

V2.83
(2006/06/02)

In this release, we made significant changes to the timer manager module. Please consult
the Reference Manual for the new APIs of functions OSTmrCreate(), OSTmrDel(),
OSTmrStop() and OSTmrStart().

UPGRADING TO V2.83

You should follow these steps in order to upgrade from a previous version to V2.83.
Some of the items below are from V2.81 and V2.82 but are repeated here to make sure
you are aware of them:

1) Timer Manager:
 Timers MUST now be created by OSTmrCreate() before they can be used. In

V2.82, a timer was created and started when you called OSTmrStart(). Now
you MUST call OSTmrCreate() and then OSTmrStart() to create and start
the timer, respectively.

 It is now your responsibility to delete a timer when it is no longer being used.

 The Timer Manager user-available functions are now:

 OSTmrCreate()
 OSTmrDel()
 OSTmrNameGet()
 OSTmrRemainGet()
 OSTmrStart()
 OSTmrStop()

 To create and start a timer, you need to call OSTmrCreate() and then

OSTmrStart(). When you are done using a timer, you can delete it by calling
OSTmrDel().

2) TRUE and FALSE changed to OS_TRUE and OS_FALSE:
 µC/OS-II now uses and returns OS_TRUE and OS_FALSE instead of TRUE and

FALSE. If you were using TRUE and FALSE in your application you will either
need to define TRUE and FALSE yourself or change those to OS_TRUE and
OS_FALSE.

 2 of 77

3) Create APP_CFG.H:
 As of V2.81, you need to create a file called APP_CFG.H which would reside in

your project. APP_CFG.H is used to hold configuration information about your
project. Specifically, we expect that you place task priorities, task stack sizes and
other application related configuration information. The following page shows an
example of the contents of APP_CFG.H.

4) Include OS_TMR.C in your project:
 As of V2.81, you need to include OS_TMR.C in your builds in order to obtain the

new services provided in OS_TMR.C and avoid compiler warnings/errors.

5) New #defines are needed in OS_CFG.H:
 You will need to include the following #defines (they are found in OS_CFG_R.H,

the reference file for OS_CFG.H). See also the configuration manual:

 OS_TMR_EN
 OS_TMR_CFG_MAX
 OS_TMR_CFG_NAME_SIZE
 OS_TMR_CFG_WHEEL_SIZE
 OS_TMR_CFG_WHEEL_SIZE

6) Add OS_TASK_TMR_STK_SIZE:
 If you use the timer manager, you will need to define the size of the timer task

stack, i.e. OS_TASK_TMR_STK_SIZE. This is declared in your project’s
OS_CFG.H.

7) Add OS_TASK_TMR_PRIO:
 If you use the timer manager, you will need to define the priority of the timer

manager task, i.e. OS_TASK_TMR_PRIO. This is declared in your project’s
APP_CFG.H.

8) Place prototypes in OS_CPU.H:
 As of V2.81, it’s IMPORTANT that you place the prototypes for OSCtxSw(),

OSIntCtxSw() and OSStartHighRdy() in OS_CPU.H. Typically, these
functions would be prototyped as follows but, depending on the compiler, they
may need to be different:

void OSStartHighRdy(void);
void OSIntCtxSw(void);
void OSCtxSw(void);

 3 of 77

FIXED BUGS IN V2.82

os_tmr.c

You could not call OSTmrNameGet() and OSTmrRemainGet() when a
timer was in one-shot mode and the timer expired because the timer was
automatically deleted. This has now been fixed because timers are created and
deleted by the user.

CHANGES IN V2.83

os_tmr.c
 When a timer times out, it will no longer be deleted. In other words, it is now

your responsibility to delete unused timers.

 OSTmrStop() no longer deletes the timer.

 You can now safely call OSTmrRemainGet() and OSTmrNameGet()

whenever a timer is created until it gets deleted. In V2.81 and V2.82, you could
not use these functions when a timer was configured in one-shot mode.

 We added an entry in the OS_TMR data structure to allow us to verify that you are

passing a pointer to an OS_TMR structure when you call timer manager services.

 OSTmrStart() now ONLY starts (or restarts) a timer and does NOT create a

timer. A timer must now be created before it can be started.

 You must call OSTmrDel() to delete any unused timers.

 Added OSTmrStateGet() which returns the state of a timer.

 4 of 77

V2.82
(2006/03/24)

This is a minor release. However, we change the name of two (2) API calls:
OSTmrGetName(), OSTmrGetRemain() and, we added an argument to
OSTmrStart().

UPGRADING TO V2.82

You should follow these steps in order to upgrade from a previous version to V2.82.
Some of the items below are from V2.81 but are repeated here to make sure you are
aware of them:

1) TRUE and FALSE changed to OS_TRUE and OS_FALSE:
 µC/OS-II now uses and returns OS_TRUE and OS_FALSE instead of TRUE and

FALSE. If you were using TRUE and FALSE in your application you will either
need to define TRUE and FALSE yourself or change those to OS_TRUE and
OS_FALSE.

2) Create APP_CFG.H:
 As of V2.81, you need to create a file called APP_CFG.H which would reside in

your project. APP_CFG.H is used to hold configuration information about your
project. Specifically, we expect that you place task priorities, task stack sizes and
other application related configuration information. The following page shows an
example of the contents of APP_CFG.H.

3) Include OS_TMR.C in your project:
 As of V2.81, you need to include OS_TMR.C in your builds in order to obtain the

new services provided in OS_TMR.C and avoid compiler warnings/errors.

4) Place prototypes in OS_CPU.H:
 As of V2.81, it’s IMPORTANT that you place the prototypes for OSCtxSw(),

OSIntCtxSw() and OSStartHighRdy() in OS_CPU.H. Typically, these
functions would be prototyped as follows but, depending on the compiler, they
may need to be different:

void OSStartHighRdy(void);
void OSIntCtxSw(void);
void OSCtxSw(void);

 5 of 77

Example APP_CFG.H

/*

* TASK PRIORITIES

*/

#define APP_TASK_START_PRIO 4

#define OS_TASK_TMR_PRIO 5

#define APP_TASK_USER_IF_PRIO 6

#define APP_TASK_KBD_PRIO 7

#define CLK_TASK_PRIO 8 /* This defines the priority of ClkTask() */

#define OS_VIEW_TASK_PRIO 9
#define OS_VIEW_TASK_ID 9

/*

* TASK STACK SIZES

*/

#define APP_TASK_START_STK_SIZE 100
#define APP_TASK_USER_IF_STK_SIZE 100
#define APP_TASK_KBD_STK_SIZE 100

#define CLK_TASK_STK_SIZE 100 /* Stack size in OS_STK for ClkTask_OS() */

#define OS_VIEW_TASK_STK_SIZE 100

/*

* uC/Clk CONFIGURATION

*/

#define CLK_TS_BASE_YEAR 2005 /* Time stamps start year */

#define CLK_DLY_TICKS OS_TICKS_PER_SEC /* # of clock ticks to obtain 1 second */

#define CLK_DATE_EN 1 /* Enable DATE (when 1) */
#define CLK_TS_EN 1 /* Enable TIME-STAMPS (when 1) */
#define CLK_USE_DLY 1 /* Task will use OSTimeDly() instead of pend on sem. */

/*

* uC/LCD CONFIGURATION

*/

#define DISP_BUS_WIDTH 4 /* LCD controller is accessed with a 4 bit bus */

/*

* uC/OS-View CONFIGURATION

*/

#define OS_VIEW_PARSE_TASK 1 /* Parsing of received packets will be done by a task */

#define OS_VIEW_TMR_32_BITS 1 /* uC/OS-View timer is 32 bits */

#define OS_VIEW_UART_0 0
#define OS_VIEW_UART_1 1
#define OS_VIEW_UART_2 2

#define OS_VIEW_COMM_SEL OS_VIEW_UART_1

 6 of 77

FIXED BUGS IN V2.81

Fixed an error in OSMutexDel() (see OS_MUTEX.C below).

CHANGES IN V2.82

Miscellaneous:

Changed TRUE and FALSE to OS_TRUE and OS_FALSE. µC/OS-II should not
be dictating the value of TRUE and FALSE.

os_dbg_r.c

Added new constants to monitor the size of some variables and data structures,
specifically related to the new Timer management module introduced in V2.81.

os_flag.c

Added a check in OSFlagPend() to ensure that this function is not called from
an ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

os_mbox.c

Added a check in OSMboxPend() to ensure that this function is not called from
an ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

In OSMboxPostOpt() we added a new option called
OS_POST_OPT_NO_SCHED which, when set, indicates that you do not want
OSMboxPostOpt() to call the scheduler when you have completed the post.

os_mutex.c

Added a check in OSMutexDel() and the OS_DEL_ALWAYS case to make the
owner of the mutex ready-to-run (if there was an owner). Because of some code
similarities found in OSMutexPost(), we created the local function called
OSMutex_RdyAtPrio() to perform this operation and thus not increase the
code by too much.

Added a check in OSMutexPend() to ensure that this function is not called
from an ISR. Note that the documentation clearly warned about this but, we
added the code just to be sure.

 7 of 77

os_q.c
Added a check in OSQPend() to ensure that this function is not called from an
ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

In OSQPostOpt() we added a new option called OS_POST_OPT_NO_SCHED
which, when set, indicates that you do not want OSQPostOpt() to call the
scheduler when you have completed the post.

os_sem.c

Added a check in OSSemPend() to ensure that this function is not called from
an ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

os_tmr.c

Changed the name of OSTmrGetName() to OSTmrNameGet() to be
consistent with other similar services.

Changed the name of OSTmrGetRemain() to OSTmrRemainGet() to be
consistent with other similar services.

Added an argument (dly) to OSTmrStart(). This, of course, will make the
compiler issue an error if you previously used the timer manager in V2.81. The
argument specifies an initial delay before the timer enters periodic mode (see
drawing below). If you set the dly to the same value as the period then you will
obtain the same result as in V2.81. If you specify a dly of 0, period will be
used as the initial delay:

dly period

OSTmrStart()
Called

Time

ucos_ii.h
Added OS_POST_OPT_NO_SCHED and its value is 0x04.

Added .OSTmrDly in the OS_TMR data structure

 8 of 77

V2.81
(2005/09/06)

µC/OS-II now provides support for periodic as well as one-shot timers. This
functionality is found in OS_TMR.C. For more information about this new feature,
consult the “New Features and Services since V2.00” document.

UPGRADING TO V2.81

You should follow these steps in order to upgrade from a previous version to V2.81:

1) Copy OS_CFG_R.H to your project’s OS_CFG.H:
 OS_CFG_R.H is a ‘reference’ file containing all the #define constants

expected by µC/OS-II. Copying OS_CFG_R.H to your project’s OS_CFG.H
will ensure that you are not forgetting or mistyping anything.

2) Create APP_CFG.H:
 As of V2.81, you need to create a file called APP_CFG.H which would reside in

your project. APP_CFG.H is used to hold configuration information about your
project. Specifically, we expect that you place task priorities, task stack sizes and
other application related configuration information. The following page shows an
example of the contents of APP_CFG.H.

3) Include OS_TMR.C in your project:
 In order to obtain the new services provided in OS_TMR.C, you will need to make

sure that you include OS_TMR.C in your build file(s).

4) Place prototypes in OS_CPU.H:
 It’s IMPORTANT that you place the prototypes for OSCtxSw(),

OSIntCtxSw() and OSStartHighRdy() in OS_CPU.H. Typically, these
functions would be prototyped as follows but, depending on the compiler, they
may need to be different:

void OSStartHighRdy(void);
void OSIntCtxSw(void);
void OSCtxSw(void);

 9 of 77

Example APP_CFG.H

/*

* TASK PRIORITIES

*/

#define APP_TASK_START_PRIO 4

#define OS_TASK_TMR_PRIO 5

#define APP_TASK_USER_IF_PRIO 6

#define APP_TASK_KBD_PRIO 7

#define CLK_TASK_PRIO 8 /* This defines the priority of ClkTask() */

#define OS_VIEW_TASK_PRIO 9
#define OS_VIEW_TASK_ID 9

/*

* TASK STACK SIZES

*/

#define APP_TASK_START_STK_SIZE 100
#define APP_TASK_USER_IF_STK_SIZE 100
#define APP_TASK_KBD_STK_SIZE 100

#define CLK_TASK_STK_SIZE 100 /* Stack size in OS_STK for ClkTask_OS() */

#define OS_VIEW_TASK_STK_SIZE 100

/*

* uC/Clk CONFIGURATION

*/

#define CLK_TS_BASE_YEAR 2005 /* Time stamps start year */

#define CLK_DLY_TICKS OS_TICKS_PER_SEC /* # of clock ticks to obtain 1 second */

#define CLK_DATE_EN 1 /* Enable DATE (when 1) */
#define CLK_TS_EN 1 /* Enable TIME-STAMPS (when 1) */
#define CLK_USE_DLY 1 /* Task will use OSTimeDly() instead of pend on sem. */

/*

* uC/LCD CONFIGURATION

*/

#define DISP_BUS_WIDTH 4 /* LCD controller is accessed with a 4 bit bus */

/*

* uC/OS-View CONFIGURATION

*/

#define OS_VIEW_PARSE_TASK 1 /* Parsing of received packets will be done by a task */

#define OS_VIEW_TMR_32_BITS 1 /* uC/OS-View timer is 32 bits */

#define OS_VIEW_UART_0 0
#define OS_VIEW_UART_1 1
#define OS_VIEW_UART_2 2

#define OS_VIEW_COMM_SEL OS_VIEW_UART_1

 10 of 77

FIXED BUGS IN V2.80

Fixed a number of errors introduced when we increased the number of task to 255.

CHANGES IN V2.81

os_cfg.h (see template in os_cfg_r.h)

Re-arranged the order of #defines in this file.

Added a number of #define constants to support timer management:

OS_ISR_PROTO_EXT

OS_TMR_EN
OS_TMR_CFG_MAX
OS_TMR_CFG_WHEEL_SIZE
OS_TMR_CFG_NAME_SIZE
OS_TMR_CFG_TICKS_PER_SEC
OS_TASK_TMR_STK_SIZE

os_core.c

Added call to OSTmr_Init().

ucos_ii.h

Added OS_TASK_TMR_ID and its value is 65533.

Changed OS_IDLE_PRIO to OS_TASK_IDLE_PRIO

Changed OS_STAT_PRIO to OS_TASK_STAT_PRIO

Added OS_ERR_TMR_??? and OS_TMR_OPT_???.

Added the OS_TMR, OS_TMR_WHEEL and OS_TMR_CALLBACK data types
needed to support timer management.

 11 of 77

V2.80
(2005/03/21)

This is a big release because µC/OS-II now supports up to 255 tasks.

We also made a number of minor changes related to MISRA C rules.

To support up to 255 tasks, we simply increased the ready list and event wait lists to a
matrix of 16x16 instead of 8x8. In fact, the actual size of the matrix depends on the value
of OS_LOWEST_PRIO in OS_CFG.H. If OS_LOWEST_PRIO is less than or equal to
63, we use an 8x8 matrix and thus µC/OS-II behaves exactly the same as it used to. If
you specify a value for OS_LOWEST_PRIO to be greater than 63, we use the 16x16
matrix as show below.

7

0

0

15

HPT (0)

LPT (254)

NEVER used,
OS_PRIO_SELF

HPT (0)

LPT (63)

OSRdyGrp OSRdyTbl[]
8x8 Max.

OSRdyGrp OSRdyTbl[]
16x16 Max.

OS_LOWEST_PRIO <= 63 OS_LOWEST_PRIO > 63

0 15

0 7

You should note that the actual size of the matrix depends on OS_LOWEST_PRIO. For
example, if OS_LOWEST_PRIO is 10 then the matrix is actually 2x8 (two bytes of 8
bits). Similarly, if OS_LOWEST_PRIO is set to 47, the matrix will be 6x8. When
OS_LOWEST_PRIO is above 63, we use 16-bit wide entries. For example, if you specify
OS_LOWEST_PRIO to be 100 then the matrix will be 7x16 (7 entries of 16 bits each).
You CANNOT have OS_LOWEST_PRIO at 255 because that value is reserved for
OS_PRIO_SELF.

 12 of 77

FIXED BUGS IN V2.77

No bugs were reported in V2.77.

CHANGES IN V2.80

OS_CFG.H (see template in OS_CFG_R.H)

OS_LOWEST_PRIO in OS_CFG.H can now be up to 254 thus supporting up to
255 tasks (including the idle task).

You now need to add the #define OS_FLAGS_NBITS which MUST be
either 8, 16 or 32. This #define defines the number of bits used for event flags.

We REMOVED the type definition of OS_FLAGS and thus, you will also have
to remove it in your OS_CFG.H file.

OS_CORE.C

We removed the OSMapTbl[] and replaced its use in the code with a 1 << n
operation.

Added a new function called OS_SchedNew() to find the new highest priority
task ready-to-run. In other words, this function determines the value of the
variable OSPrioHighRdy. OS_SchedNew() is called by OS_Sched(),
OSIntExit() and OSStart().

ucos_ii.h

Moved the #define OS_VERSION before the #include statements of
OS_CFG.H and OS_CPU.H to allow these files to have definitions based on
which version of µC/OS-II.

Added OS_TASK_OPT_NONE to allow this to be used in
OSTaskCreateExt() instead of 0.

GENERAL
Functions that used char now use INT8U to satisfy one of the MISRA C rules.

 13 of 77

V2.77
(2004/11/29)

This release corrects a number of very minor issues with V2.76.

FIXED BUGS IN V2.76

Bug V2.76-001:
There were a number of typos and incorrect comments that were fixed.

CHANGES IN V2.77

V2.77 adds a few minor enhancements to V2.76. However, none of these enhancements
were critical.

IMPORTANT

The prototypes for OSStartHighRdy(), OSCtxSw() and OSIntCtxSw() are
NOW assumed to be placed in OS_CPU.H since they have been removed from
ucos_ii.h. The reason this was done was to allow different declarations for these
functions. For example, with the IAR ARM compiler, these functions are declared as
follows:

__arm void OSStartHighRdy(void);
__arm void OSCtxSw(void);
__arm void OSIntCtxSw(void);

The ‘standard’ declarations should be:

void OSStartHighRdy(void);
void OSCtxSw(void);
void OSIntCtxSw(void);

Please add these prototypes in YOUR os_cpu.h file.

 14 of 77

OS_CFG.H
We now expect the presence of OS_VIEW_MODULE in your OS configuration file. This
is such that you can more easily add µC/OS-View to your product. Defining
OS_VIEW_MODULE to 1 indicates that you will include µC/OS-View in your product’s
build. Setting OS_VIEW_MODULE to 0 indicates that you will not be using
µC/OS-View.

If you DO NOT add this #define, the compiler will complain via a #error directive
that we added in ucos_ii.h.

OS_CORE.C
We now assign a name to the µC/OS-II idle task and statistics task if
OS_TASK_NAME_SIZE is defined as being greater than 14 in OS_CFG.H. This is used
for debugging purposes. The idle task is called: “uC/OS-II Idle” and the statistics
task is called “uC/OS-II Stat”.

GENERAL
In ALL the functions that pass *err so than an error code is returned to the caller, err
is checked to make sure it’s not a NULL pointer. The function returns if it is.
Unfortunately, you are not told why because we have no way to give you an error code.

In ALL the functions that pass a pointer, we now check to make sure that the pointer is
not a NULL pointer. This was previously done for some of the pointers but not all.

 15 of 77

V2.76
(2004/02/06)

This release corrects a number of minor issues with V2.75 and also add a new Semaphore
interface function (OSSemSet()).

FIXED BUGS IN V2.75

Bug V2.75-001:
OSTaskDlyResume() makes the same test as the new OSTimeTick() in that if a
task was delayed and was pending on an event then, .OSTCBPendTO will be set to
TRUE indicating that the task timed out.

Bug V2.75-002:
The following functions:

OSTaskChangePrio()
OSTaskDel()
OSTaskDelReq()
OSTaskNameSet()
OSTaskNameGet()
OSTaskResume()
OSTaskSuspend()

All needed to check for ‘ptcb’ pointing to (void *)1 in case the task was assigned to
a Mutex PIP.

Bug V2.75-003:
OSTaskDelReq() had a local variable ‘stat’ which was declared as a BOOLEAN but
was in fact used as an 8 bit integer. This local variable is now an INT8U.

NEW FEATURE

V2.76 adds a new semaphore function (OSSemSet()) that allows you to set the value
(i.e. count) of the semaphore. This new feature is useful when you use semaphores as a
signaling mechanism. You enable this function by setting OS_SEM_SET_EN to 1 in
OS_CFG.H of your product. See details about this function in the reference manual.

 16 of 77

V2.75
(2003/12/15)

This release corrects a number of issues that were reported by users of V2.70. This
release also contains some changes. Probably the most significant improvement is that
we made sure that µC/OS-II passes LINT without warnings and errors. PC Lint V8 by
Gimpel Software was used to LINT µC/OS-II: http://www.gimpel.com/html/contact.htm.

FIXED BUGS IN V2.70

Bug V2.70-001:
OSTaskSuspend() and OSTaskResume() bug has been corrected. The problem
and correction are described later.

Bug V2.70-002:
In OSMemNameSet(), a return statement was missing for the case when pmem is
NULL. This bug has been corrected.

Bug V2.70-003:
In OSQPostOpt(), the test for msg being NULL must be deleted. This is because, as
of V2.62, it’s now possible to post NULL pointer messages to a message queue. This has
been corrected.

Bug V2.70-004:
In OSQDel(), the first test should return pevent instead of a NULL pointer upon
failure. This bug has been corrected.

Bug V2.70-005:
OSTaskNameGet() and OSTaskNameSet() were missing an
OS_EXIT_CRITICAL() before the exit of the first test. This has been corrected.

Bug V2.70-006:
In OSFlagPend() the returned flags_rdy was not set correctly if you didn’t specify
OS_FLAG_CONSUME. This has been corrected.

 17 of 77

http://www.gimpel.com/html/contact.htm

Bug V2.70-007:
In OSTaskQuery() we needed to check to see if the TCB was assigned to a Mutex.
An additional test has thus been added to correct the problem.

Bug V2.70-008:
In OSMutexPend() we removed a &= statement in an if statement for MISRA
compliance.

Bug V2.70-009:
In ucos_ii.h we tested for OS_MAX_EVENTS >= 256 when it should have been
testing for >= 65500.

Bug V2.70-010:
Added test for OS_ARG_CHK_EN in OSTimeDlyHMSM().

 18 of 77

CHANGES IN V2.75

V2.75-001
We added a version number at the top of each file in the main comment header.

V2.75-002
ucos_ii.h now includes os_cfg.h and os_cpu.h. This allows you to compile
µC/OS-II with only those three headers.

V2.75-003
Changed the data type for the variable i in OS_InitRdyList() from INT16U to
INT8U.

V2.75-004
Added cpu_sr = 0 in all the functions that need to use OS_ENTER_CRITICAL()
and OS_EXIT_CRITICAL(). This is done because some compilers generate warnings
when the variable is not directly referenced in the code because it’s buried inside a
macro. We could have used cpu_sr = cpu_sr but, LINT complained about the fact
that cpu_sr is being assigned a value that has not been initialized.

V2.75-005
Removed the global variable OSIntExitY in OSIntExit() and replaced it with a
local variable called y. Note that you will need to delete the line:

 + sizeof(OSIntExitY)

in the file os_dbg.c of your port file (if this file exits in your port).

IMPORTANT

If you use an OLD µC/OS-II port, you might need to adjust the constant to add to the SP
(Stack Pointer) in OSIntCtxSw(). In other words, if you use a port that adjust the SP
in OSIntCtxSw(), you might need to adjust the constant because your port will NOT
WORK. If your port uses the new scheme outline in the hardcover edition of the
µC/OS-II book, you will not have to do anything as your port will work just fine.

 19 of 77

V2.75-006
Added a flag in OS_TCB (called .OSTCBPendTO) that indicates whether a ‘pend’ call
has timed out or not. The addition of this flag was necessary to fix bug V2.70-001.
Details about the changes are described on the next page.

V2.75-007
Added a test in OSTaskCreate() and OSTaskCreateExt() to prevent calling
these functions from an ISR.

V2.75-008
Added a (void) in front of OS_FlagTaskRdy() in OS_FLAG.C and in front of
OS_EventTaskRdy() in OS_MBOX.C, OS_Q.C, OS_SEM.C and OS_MUTEX.C
because the return value is not being used. This was done to prevent LINT warnings.

V2.75-009
Changed #if OS_EVENT_EN > 0 with #if OS_EVENT_EN because LINT was
complaining that the boolean value OS_EVENT_EN was being compared with an integer
value.

 20 of 77

Correction of Bug V2.70-001

Problem description:
If a task pends on an event with a timeout but .OSTCBDly gets decremented to 0 before
the task gets suspended (using OSTaskSuspend()) by another task then, when the
suspension is removed, the task ‘appears’ to be waiting forever on the message queue
(when it was waiting with a timeout). Of course, if the queue is posted, the task would be
made ready to run by the post.

Problem correction:
The problem was corrected by adding a variable called .OSTCBPendTO in the OS_TCB.
This variable is set by OSTimeTick() when OSTimeTick() determines that the
delayed task is in fact pending on either a semaphore, mailbox, queue, mutex or event
flag. To find and correct the problem, we drew a state transition diagram of the different
states a task can take as shown in the figure below.

Each large box represents a state a task can be in. A ‘red’ state can be entered directly by
a task or from another task. The Stat byte contains the value of the .OSTCBStat field
in the OS_TCB of the task. Dly represents the value of .OSTCBDly and can be either 0
or a non-zero value (i.e. > 0). We assumed message queues in this example but the

 21 of 77

states apply to semaphores, mailboxes, mutexes and event flags. Below is a narration of
the different states.

01 A running task calls OSTimeDly(). .OSTCBStat doesn’t get changed and

only .OSTCBDly is affected.

02 OSTimeTick() decrements .OSTCBDly to zero and the task is made ready-to-

run.

03 A delayed task gets suspended by another task.

04 The task suspension is removed by another task.

05 OSTimeTick() decrements .OSTCBDly to zero but, since the task is still

suspended, it doesn’t get readied. Also, the flag .OSTCBPendTO gets set to
FALSE since the task was not pending on anything.

06 A task gets suspended by itself or by another task. Of course, this task is removed

from the ready list but is not waiting for any event.

07 The suspended task is readied by another task that calls OSTaskResume().

08 A task calls OSQPend() and specifies a non-zero timeout value. This means

that the task will be readied if a message is received within the timeout period or,
if the timeout expires.

09 OSTimeTick() is called before a message is received. In this case, the flag

.OSTCBPendTO is set and the OS_STAT_Q flag is cleared by
OSTimeTick(). In previous versions, we didn’t clear the OS_STAT_Q flag
because we used it to indicate that the task timed out waiting for the event to
occur. Since we now have the .OSTCBPendTO flag, we will use it for this
purpose.

10 A task calls OSQPost() sending a message to the task via a message queue. In

this case, the timeout is cancelled and the flag .OSTCBPendTO is set to FALSE.

11 A task calls OSTaskSuspend() to suspend a task that was already waiting on a

message queue (with timeout).

 22 of 77

12 A task calls OSTaskResume() to resume the task suspended. In this case, the
task is still not ready-to-run because the message queue has not been posted and
the timeout has not expired.

13 A task calls OSQPost() before the timeout expires. However, the task is still

suspended. Note that the OSQPost() cancels the timeout (sets .OSTCBDly to
0) and sets the flag .OSTCBPendTO to FALSE because we didn’t get a timeout.
Note also that the message is given to the task because it was the highest priority
task waiting for the message, even though the task is still suspended.

14 OSTimeTick() occurs before the message gets posted to the queue. In this

case, OSTimeTick() sets the .OSTCBPendTO flag to TRUE indicating that
the message was not received within the specified timeout period. However, the
task is still unconditionally suspended. If the message is posted before the task is
resumed, the .OSTCBPendTO flag will be cleared.

15 A task calls OSQPend() and specifies a zero timeout value indicating that the

task will wait forever to receive a message.

16 A task calls OSTaskSuspend() to suspend a task that was already waiting on a

message queue (without timeout).

17 A task calls OSTaskResume() to resume the task suspended. In this case, the

task is still not ready-to-run because it’s waiting for an event that did not occur.

18 A task calls OSQPost(). However, the task is still suspended. The flag

.OSTCBPendTO is set to FALSE because we didn’t get a timeout. Note also
that the message is given to the task because it was the highest priority task
waiting for the message, even though the task is still suspended.

19 A task calls OSQPost(). The flag .OSTCBPendTO is set to FALSE because

we didn’t get a timeout.

 23 of 77

V2.70
(2003/04/01)

V2.70 is a considered a major release for a number of reasons:

1) The directory structure for ports has been completely revised. This doesn’t really
affect the source code for µC/OS-II per-se but it does imply that port files have
been moved around.

2) Include files are now surrounded by brackets instead of double quotes. This
allows you to locate µC/OS-II and the port files anywhere on your computer
system, and let your compile environment resolve include paths. In other words,
you now need to tell your compiler which path to search for include files since
µC/OS-II file no longer assume an absolute path.

3) All calls to standard library functions have been removed from µC/OS-II and
have been replaced with internal OS_???() functions. This was done to
simplify third party certification.

4) Item #3 above has an additional advantage - compilation of µC/OS-II now only
depends on the following three files: os_cpu.h, os_cfg.h and ucos_ii.h.
In other words, if you define the contents of os_cpu.h and os_cfg.h for your
product, you will be able to compile µC/OS-II files standalone.

5) Port files for the 80x86 CPU running in a DOS environment are no longer
included with the distribution. This has been done for two reasons. First, we
don’t want µC/OS-II to be thought of as ‘only’ an 80x86 RTOS since it’s been
ported to a large number of processors. Second, all the other processor ports are
available on the web site as a free download and now, the 80x86 ports are no
different.

6) The DOS utility TO.EXE is no longer part of the distribution.
7) We now include two new files: os_cfg_r.h and os_dbg_r.c. These are

described later.
8) Initialization of the statistic task now takes 1/10 of a second instead of 1 second.

This has been done to reduce the boot time of an embedded system target.
9) Changed the returned value from OSFlagAccept() and OSFlagPend() to

now return the value of the flags that caused the task to become ready-to-run.
This was done because a lot of users requested this ‘preferred’ behavior.

 24 of 77

This release corrects just one minor issue that was reported by a user of V2.62. This
release also contains some minor changes. No new features or functions were added.

Important
ucos_ii.h now includes #include statements to include os_cpu.h and
os_cfg.h. This means that you MUST now REMOVE these #include statements
from includes.h. In other words, ucos_ii.h now has:

#include <os_cpu.h>
#include <os_cfg.h>

and those statements MUST be REMOVED from includes.h otherwise the above
two files would be multiply included

 25 of 77

FIXED MINOR ISSUE WITH V2.62

Bug V2.62-001:
In OSTaskDel(), we had added a statement to clear the stack pointer of the task being
deleted. This statement appears on line 428 and has been since removed. The code was
added originally to show that the stack of a task that has been deleted is no longer valid.
This was to support Kernel Awareness but was found to cause side effects. The line to
delete is:

 ptcb->OSTCBStkPtr = (OS_STK *)0; /* Show that TCB is 'unused' */

 26 of 77

CHANGES IN V2.70

V2.70-001
In V2.70, we changed the directory structure of where ports are placed. This change was
necessary because of the growing confusion about where ports should be placed. The
new directory structure is explained in AN-2002 which can be downloaded from the
Micriµm web site.

V2.70-002
The file OS_DEBUG.C has been renamed to OS_DBG.C. OS_DEBUG.C was introduced
in V2.62.

V2.70-003
Conditional compilation of object names is now checking for greater than 1 (i.e. > 1)
instead of greater than zero (i.e. > 0). The reason is because of the following code
example:

#if OS_EVENT_NAME_SIZE > 1
 pevent->OSEventName[0] = ‘?’;
 pevent->OSEventName[1] = OS_ASCII_NUL;
#endif

If OS_EVENT_NAME_SIZE was set to 1 then there would not be sufficient room in the
.OSEventName file to hold the ‘?’ as well as the NUL character. This was really not a
big problem in the past because it would be unlikely that you would have allocated only
ONE character to the name of an object.

V2.70-004
Removed all calls to standard library functions and replaced them with local functions
which are found in OS_CORE.C as follows:

Standard Library Function: Has been replaced by:
memcpy() OS_MemCopy()
memset() OS_MemClr()
strlen() OS_StrLen()
strcpy() OS_StrCopy()

 27 of 77

V2.70-005
Added call to function OSDebugInit() in OSInit(). OSDebugInit() is a
function that has been added in V2.70 because some compilers will actually optimize out
all the ‘const’ variables in os_dbg.c if they are not referenced by any code. The
‘const’ in os_dbg.c are used by a Kernel Aware debugger and all of the ‘const’ are
needed. OSDebugInit() is a function that really doesn’t do anything except reference
the ‘const’ variables in os_dbg.c to prevent the compiler from optimizing them out.
Of course, if OS_DEBUG_EN is set to 0 in os_cfg.h then OSDebugInit() is not
called and is thus not needed.

V2.70-006
Changed the name of all variables called ‘pdata’ and ‘data’ to more appropriate
variable names. The reason for this change is that some 8051 compilers reserve the
words pdata and data for storage classes.

V2.70-007
ucos_ii.h now includes #include statements to include os_cpu.h and
os_cfg.h and thus, you MUST now REMOVE these include statements from the
project’s master include file, includes.h to prevent double inclusion of os_cpu.h
and os_cfg.h in your project. Because of this change, all of the µC/OS-II source files
now include ucos_ii.h instead of includes.h.

V2.70-008
Include files are now surrounded by brackets instead of double quotes. This allows you
to locate µC/OS-II and the port files anywhere on your computer system, and let your
compile environment resolve include paths. In other words, you now need to tell your
compiler which path to search for include files since µC/OS-II file no longer assume an
absolute path.

V2.70-009
Changed OSStatInit() and OS_TaskStat() so that the statistic task only needs
1/10 of a second to determine the CPU capacity. This change was done to speed up the
boot time of an embedded system.

V2.70-010
Changed the returned value from OSFlagAccept() and OSFlagPend() to now
return the value of the flags that caused the task to become ready-to-run. This was done
because a lot of users requested this ‘preferred’ behavior.

 28 of 77

V2.62
(2003/01/15)

V2.62 is a simple maintenance release. The release corrects a few very minor issues that
were reported by users and also, contains some changes to better support Kernel Aware
debuggers. No new features or functions were added.

FIXED MINOR ISSUES WITH V2.61

Bug V2.61-001:

In OS_FLAG.C, the second OS_ENTER_CRITICAL() in
OSFlagPendGetFlagsRdy() needed to be changed to
OS_EXIT_CRITICAL(). This problem has been corrected.
The BAD code was:

OS_FLAGS OSFlagPendGetFlagsRdy (void)
{
 #if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
 #endif
 OS_FLAGS flags;

 OS_ENTER_CRITICAL();
 flags = OSTCBCur->OSTCBFlagsRdy;
 OS_ENTER_CRITICAL();
 return (flags);
}

and should have been:

OS_FLAGS OSFlagPendGetFlagsRdy (void)
{
 #if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
 #endif
 OS_FLAGS flags;

 OS_ENTER_CRITICAL();
 flags = OSTCBCur->OSTCBFlagsRdy;
 OS_EXIT_CRITICAL();
 return (flags);
}

 29 of 77

Bug V2.61-002:

In OS_MEM.C, the following code on line #242 was:

if (len > (OS_EVENT_NAME_SIZE - 1)) {

and should have been:

if (len > (OS_MEM_NAME_SIZE - 1)) {

Bug V2.61-003:
In OS_CORE.C, OS_TaskStatStkChk() didn't check for a task that was
assigned to a MUTEX and thus attempted to compute the stack size of an invalid task.
The correct code for this function is:

#if (OS_TASK_STAT_STK_CHK_EN > 0) && (OS_TASK_CREATE_EXT_EN > 0)
void OS_TaskStatStkChk (void)
{
 OS_TCB *ptcb;
 OS_STK_DATA stk_data;
 INT8U err;
 INT8U prio;

 for (prio = 0; prio <= OS_IDLE_PRIO; prio++) {
 err = OSTaskStkChk(prio, &stk_data);
 if (err == OS_NO_ERR) {
 ptcb = OSTCBPrioTbl[prio];
 if (ptcb != (OS_TCB *)0) { /* Make sure task 'ptcb' is ... */
 if (ptcb != (OS_TCB *)1) { /* ... still valid. */
#if OS_TASK_PROFILE_EN > 0
 #if OS_STK_GROWTH == 1
 ptcb->OSTCBStkBase = ptcb->OSTCBStkBottom + ptcb->OSTCBStkSize;
 #else
 ptcb->OSTCBStkBase = ptcb->OSTCBStkBottom - ptcb->OSTCBStkSize;
 #endif
 ptcb->OSTCBStkUsed = (INT32U)stk_data.OSUsed; /* Store the number of bytes used */
#endif
 }
 }
 }
 }
}
#endif

Bug V2.61-004:

In OS_CORE.C, OS_TaskStatStkChk() had an error computing the stack base.
The code presented in V2.61-003 above corrects the issue.

 30 of 77

CHANGES IN V2.62

V2.62-001
In V2.62, we removed the ‘debug’ code from OS_CORE.C and created a NEW file
called OS_DEBUG.C. On other words, in V2.61, there were a number of ‘const’
variables that were added to better support kernel aware debuggers. These consts have
been moved to the new file OS_DEBUG.C for two reasons:

1) If you don’t have a kernel aware debugger, OS_CORE.C would have added about

100 bytes of code that would serve no purpose. By moving the const to
OS_DEBUG.C, if you don’t have a kernel aware debugger, you don’t need to compile
and link OS_DEBUG.C with your µC/OS-II based application.

2) Some compilers (such as the IAR) compiles-out code or constants that don’t appear to

be used anywhere. In the case of the debug variables, the variables reside in ROM
and are only there for the debugger. In other words, they serve no other purpose for
µC/OS-II based applications and some compilers would be ‘smart’ enough to not
include them. To prevent this from happening and thus make the variable available
for the debugger, the debug variable were placed in OS_DEBUG.C so that you can
use compiler specific directives to prevent this type of optimization. However, these
directives are very compiler specific and could thus change from one compiler to
another. This would cause compatibility problems if these directives were placed in
OS_CORE.C because OS_CORE.C is supposed to be compiler and processor
independent. Having a separate file (OS_DEBUG.C) solves this problem because the
file can be associated with the PORT and not the processor independent code.

NOTE

This all means that a PORT should now contain OS_DEBUG.C if you use a Kernel
Aware Debugger that requires the ‘const’ provided in OS_DEBUG.C. In fact, you might
have to modify OS_DEBUG.C based on the compiler you are using.

V2.62-002
In OS_MUTEX.C, there were a couple of places where some of the MISRA C rules had
not been followed (in OSMutexPend() and OSMutexPost()).

V2.62-003
Added ‘tags’ to structures.

 31 of 77

V2.62-004
Added OSEndianessTest const in OS_DEBUG.C to allow the debugger to
automatically determine whether the processor is little endian or big endian.

 32 of 77

V2.61
(2002/10/20)

V2.61 is a simple maintenance release and no run-time bugs were found in µC/OS-II
V2.60. The release only corrects a few very minor issues that mostly affected kernel
awareness support, and adds a bit of internal code. No new features or functions were
added.

FIXED MINOR ISSUES WITH V2.60

Bug V2.60-001:

In OS_CORE.C, the following ROM constant was set to:

INT16U const OSTaskStatStkChkEn = OS_TASK_STAT_EN;

And should have been:

INT16U const OSTaskStatStkChkEn = OS_TASK_STAT_STK_CHK_EN;

Bug V2.60-002:

In uCOS_II.H, the following code was:

#if OS_EVENT_NAME_SIZE > 0
INT8U OSEventNameGet(OS_EVENT *pevent, char *pname, INT8U *err);
void OSEventNameSet(OS_EVENT *pevent, char *pname, INT8U *err);
#endif

and should have been:

#if (OS_EVENT_EN > 0) && (OS_EVENT_NAME_SIZE > 0)
INT8U OSEventNameGet(OS_EVENT *pevent, char *pname, INT8U *err);
void OSEventNameSet(OS_EVENT *pevent, char *pname, INT8U *err);
#endif

 33 of 77

Bug V2.60-003:

In uCOS_II.H, the following code was:

#if OS_FLAG_NAME_SIZE > 0
INT8U OSFlagNameGet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);
void OSFlagNameSet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);
#endif

and should have been:

#if (OS_FLAG_EN > 0) && (OS_FLAG_NAME_SIZE > 0)
INT8U OSFlagNameGet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);
void OSFlagNameSet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);
#endif

Bug V2.60-004:

In OS_MEM.C, the following code was missing in OS_MemInit(), for the last
OS_MEM element:

#if OS_MEM_NAME_SIZE > 0
 (void)strcpy(pmem->OSMemName, "?");
#endif

Bug V2.60-005:

In OS_CORE.C, added conditional compilation for the following prototype:

#if OS_TASK_STAT_EN > 0
static void OS_InitTaskStat(void);
#endif

ADDED CODE

Added V2.61-001:

In OS_CORE.C, added the following ROM constant for kernel awareness support:

 OSMemSize = sizeof(OS_MEM);

 34 of 77

V2.60
(2002/09/28)

Changes were made to V2.52 for the following reasons:

a) To fix minor issues with V2.52.
b) To simplify FAA Level A certification by removing all MCDC (Modified Condition

Decision Coverage).
c) To follow most of the guidelines of The Motor Industry Software Reliability

Association “Guidelines for the use of the C language in vehicle based software”.
d) To add support for kernel awareness.
e) To directly support µC/OS-View.
f) Added new features.
g) Made some changes to the code.

 35 of 77

FIXED ISSUES WITH V2.52

Bug V2.52-001:

In OS_CORE.C, function OS_InitMisc(), there is no need to test
OS_TASK_CREATE_EXT_EN:

 #if (OS_TASK_STAT_EN > 0) && (OS_TASK_CREATE_EXT_EN > 0)
 OSIdleCtrRun = 0L;
 OSIdleCtrMax = 0L;
 OSStatRdy = FALSE;
 #endif

The correct code is thus:

 #if OS_TASK_STAT_EN > 0
 OSIdleCtrRun = 0L;
 OSIdleCtrMax = 0L;
 OSStatRdy = FALSE;
 #endif

Bug V2.52-002:

In OS_TASK.C, function OSTaskDel(), the variable self was never used. The
variable is now removed.

Bug V2.52-003:

In OS_TASK.C, function OSTaskStkChk() was missing a test. The incorrect
code was:

 ptcb = OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0) {
 OS_EXIT_CRITICAL();
 return (OS_TASK_NOT_EXIST);
 }

The correct code is:

 ptcb = OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0 || ptcb == (OS_TCB *)1) {
 OS_EXIT_CRITICAL();
 return (OS_TASK_NOT_EXIST);
 }

 36 of 77

Bug V2.52-004:

In OS_MUTEX.C, function OSMutexPost() the condition to check to see if the
current task is the owner of the mutex has been changed from:

 if (OSTCBCur->OSTCBPrio != pip &&
 OSTCBCur->OSTCBPrio != prio) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_NOT_MUTEX_OWNER);
 }

To:

 if (OSTCBCur != (OS_TCB *)pevent->OSEventPtr) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_NOT_MUTEX_OWNER);
 }

This change allows a task to obtain multiple mutexes. A task could thus have the
following code:

 Acquire Mutex #1;
 Acquire Mutex #2;
 Release Mutex #2;
 Release Mutex #1;

Mutexes MUST be released in the same order as they were acquired.

Bug V2.52-005:

In OS_MUTEX.C, the function OSMutexPend() was changed to allow a mutex
owner to pend on another kernel object such as a semaphore. In other words, a task
could have the following code:

 Acquire Mutex; /* Mutex is available, task now owns it */
 Acquire Semaphore; /* Semaphore is NOT available, suspend task! */
 .
 .

Then, a high priority task that would call OSMutexPend() on the same mutex
would notice that the mutex owner has a lower priority than the task that needs the
mutex. OSMutexPend() would then raise the priority of the task that owns the
mutex and will notice that the task is also waiting on a semaphore.
OSMutexPend() would then change the priority of the mutex owner in the
semaphore wait list.

 37 of 77

SIMPLIFYING ‘FAA LEVEL A’ CERTIFICATION

Changes were made to V2.52 to remove all MCDC (Modified Condition Decision
Coverage). MCDCs are basically conditionals with multiple possible outcomes. For
example, in the following code, there are eight (8) possible outcomes based on the
different values of a, b, c, d, e and f:

if (a == b && c == d && e == f) {
 /* Conditions met */
}

A better way to write the above code (from a certification perspective) is shown below:

if (a == b) {
 if (c == d) {
 if (e == f) {
 /* Conditions met */
 }
 }
}

I went through all the µC/OS-II code and removed the MCDCs. Of course, the code
behaves exactly the same as before.

 38 of 77

FOLLOWED MOST OF THE MISRA GUIDELINES

MISRA stands for “The Motor Industry Software Reliability Association” and this
association published back in April 1998, a list of 127 guidelines for programming
applications using the C programming language. You can obtain this document by
visiting:

http://www.misra.org.uk

The document is called:

 “Guidelines For The Use Of The C Language In Vehicle Based Software”
 ISBN 0 9524156 9 0

It so happens that µC/OS-II was written by following most of the MISRA guidelines
even before the guidelines were ever published. At this time, µC/OS-II is not ‘compliant’
with the guidelines but simply follows most of them.

One of the most significant changes to µC/OS-II’s code is the removal of assignments
inside conditionals. For instance, the following code:

if ((pevent->OSEventTbl[y] &= ~bitx) == 0) {
 /* … */
}

Has been replaced by:

pevent->OSEventTbl[y] &= ~bitx;
if (pevent->OSEventTbl[y] == 0) {
 /* … */
}

 39 of 77

http://www.misra.org.uk/

SUPPORT OF KERNEL AWARE DEBUGGERS

Variables and constants have been added to help support kernel aware debuggers.
Specifically, a number of variables can be queried by a debugger to find out about
compiled-in options. For example, the debugger can find out the size of an OS_TCB,
µC/OS-II’s version number, the size of an event flag group (OS_FLAG_GRP) and much
more. Those variables are enabled by OS_DEBUG_EN in OS_CFG.H.

SUPPORT OF µC/OS-View

Variables in OS_TCB have been added (see OS_TASK_PROFILE_EN) to support
profiling tools such as µC/OS-View.

Also OS_TaskStat() can now check the stack of each of the active tasks (see
OS_TASK_STAT_STK_CHK_EN).

An OS_TCB can also contain the name of each task which can then be displayed on the
µC/OS-View Windows application.

µC/OS-View can ‘step’ tick interrupts one at a time. In other words, through a command
sent by a user of µC/OS-View, µC/OS-II can process one tick at a time. Each tick
requires a user to press a key from the µC/OS-View application.

ADDED NEW FEATURES

1) Find out which flag(s) caused task to wakeup.

Added the function OSFlagPendGetFlagsRdy() (file OS_FLAG.C) to allow to
determine which flag(s) caused the current task to become ready. In other words, you
will now be able to know what event flag(s) caused the pending task to wake up.

2) Posting NULL pointers to queues.

It is now possible to send NULL pointer message through queues. OSQPost() and
OSQPostFront() no longer blocks NULL pointers from being deposited into
queues. This means that OSQPend() will thus be able to receive NULL pointer
messages. You should now check the status of the err argument to determine
whether the return from the pend was caused by a timeout or the actual reception of a
message.

Because of this change, I had to change the API for OSQAccept() so that it returns
an error code indicating the outcome of the call.

 40 of 77

3) Assigning names to Tasks and other kernel objects.
It is now possible to assign names to Tasks, Memory Partitions, Semaphores,
Mutexes, Event Flags, Mailboxes and Queues. The names are useful when
debugging applications. You assign names by calling one of the following functions:

OSEventNameSet()
OSFlagNameSet()
OSMemNameSet()
OSTaskNameSet()

You can obtain the name of a task or a kernel object by calling the following
functions:

OSEventNameGet()
OSFlagNameGet()
OSMemNameGet()
OSTaskNameGet()

This version doesn’t allow you to manipulate kernel objects using names. For
example, you can’t delete a task by specifying its name, you can’t post to a queue by
specifying the queue by its name, etc.

4) Disable calls to OSTaskSwHook() and OSTimeTickHook()

It is now possible to disable (at compile time) the need to have the functions
OSTaskSwHook() and OSTimeTickHook(). This feature was requested
because of the overhead involved in calling empty functions during a context switch
and also every tick.

To disable OSTaskSwHook(), simply set OS_TASK_SW_HOOK_EN to 0 in
OS_CFG.H. Of course, the port (OS_CPU_A.ASM) for the processor you are using
must not call OSTaskSwHook().

To disable OSTimeTickHook(), simply set OS_TIME_TICK_HOOK_EN to 0 in
OS_CFG.H.

5) Added variables in OS_TCB to allow profiling

Variables have been added to OS_TCB to allow each task to be profiled. In other
words, µC/OS-II contains variables that register the number of time a task is
‘switched-in’, how long a task takes to execute, how much stack space each task
consumes and more. These variables have been added to better support µC/OS-View
and other profiling tools.

 41 of 77

6) Added tick stepping support for µC/OS-View
µC/OS-View can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’
commands from µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II
from calling OSTimeTick() so that timeouts and time delays are no longer
processed. However, though a keystroke from µC/OS-View, you can execute a single
tick at a time. If enabled, OSTimeTickHook() is still executed at the regular tick
rate in case you have time critical items to take care of in your application.

7) Added new #defines in OS_CFG.H
Instead of edition your OS_CFG.H, I recommend that you copy one of the
OS_CFG.H files provided with the V2.60 release and then modify it to satisfy your
application requirements.

OS_DEBUG_EN

This #define adds ROM constants to help support kernel aware debuggers. Specifically, a
number of named ROM variables can be queried by a debugger to find out about compiled-in
options. For example, the debugger can find out the size of an OS_TCB, µC/OS-II’s version
number, the size of an event flag group (OS_FLAG_GRP) and much more.

OS_EVENT_NAME_SIZE

This #define determines the size of ASCII strings used to name either semaphores, mutexes,
mailboxes and queues. If set to 0, this feature will be disabled: no RAM will be allocated and the
functions OSEventNameGet() and OSEventNameSet() will not be compiled. If set to a
non-zero value, it determines the number of bytes allocated for the name. Please note that you
need to accommodate for the NUL character and if you do use a non-zero value, you should have a
minimum of 2 for this value.

OS_FLAG_NAME_SIZE
This #define determines the size of ASCII strings used to name event flag groups. If set to 0,
this feature will be disabled: no RAM will be allocated and the functions OSFlagNameGet()
and OSFlagNameSet() will not be compiled. If set to a non-zero value, it determines the
number of bytes allocated for the name. Please note that you need to accommodate for the NUL
character and if you do use a non-zero value, you should have a minimum of 2 for this value.

OS_MEM_NAME_SIZE
This #define determines the size of ASCII strings used to name memory partitions. If set to 0,
this feature will be disabled: no RAM will be allocated and the functions OSMemNameGet() and
OSMemNameSet() will not be compiled. If set to a non-zero value, it determines the number of
bytes allocated for the name. Please note that you need to accommodate for the NUL character and
if you do use a non-zero value, you should have a minimum of 2 for this value.

OS_TASK_NAME_SIZE
This #define determines the size of ASCII strings used to name tasks. If set to 0, this feature
will be disabled: no RAM will be allocated and the functions OSTaskNameGet() and
OSTaskNameSet() will not be compiled. If set to a non-zero value, it determines the number
of bytes allocated for the name. Please note that you need to accommodate for the NUL character
and if you do use a non-zero value, you should have a minimum of 2 for this value.

 42 of 77

OS_TASK_PROFILE_EN
This #define is used to allocate storage for variables used for run-time task profiling. These
variables are used by µC/OS-View and some kernel aware debuggers.

OS_TASK_STAT_STK_CHK_EN
This #define allows the statistic task to do run-time checking of all the stacks of all the active
tasks. In other words, when set to 1, OS_TaskStat() calls the function
OS_TaskStatStkChk(). Of course, for this to happen, OS_TASK_STAT_EN must also be
set to 1.

OS_TASK_SW_HOOK_EN
It is now possible to disable (at compile time) the need to have the functions OSTaskSwHook().
This feature was requested because of the overhead involved in calling empty functions during a
context switch and also every tick. To disable OSTaskSwHook(), simply set
OS_TASK_SW_HOOK_EN to 0 in OS_CFG.H. Of course, the port (OS_CPU_A.ASM) for the
processor you are using must not call OSTaskSwHook().

OS_TICK_STEP_EN
µC/OS-View can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’ commands
from µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II from calling
OSTimeTick() so that timeouts and time delays are no longer processed. However, though a
keystroke from µC/OS-View, you can execute a single tick at a time. If
OS_TIME_TICK_HOOK_EN (see below) is set to 1, OSTimeTickHook() is still executed at
the regular tick rate in case you have time critical items to take care of in your application.

OS_TIME_TICK_HOOK_EN
It is now possible to disable (at compile time) the need to have the functions
OSTimeTickHook(). This feature was requested because of the overhead involved in calling
empty functions during a context switch and also every tick. To disable OSTimeTickHook(),
simply set OS_TIME_TICK_HOOK_EN to 0 in OS_CFG.H.

CHANGES

1) Added ‘extern C’ in uCOS_II.H
An “extern C” statement has been added to allow you to compile µC/OS-II using a
C++ compiler.

2) Renamed ALL files to lower case
All the µC/OS-II files have been renamed to lower case to make it easier to compile
under UNIX environments.

3) Changed the structure of OSTaskChangePrio()
I changed the structure of the code for OSTaskChangePrio() to reduce the
indentation, simplify and make the code cleaner. I also removed the re-enabling of

 43 of 77

interrupts when computing x, y, bitx and bity. There is thus, there is no need to
‘reserve’ the OSTCBPrioTbl[] entry by setting it to (OS_TCB *)1.

4) Assigning a NULL pointer to OSTCBStkPtr
I now assign a NULL pointer to OSTCBStkPtr when the free list of TCBs is created
and when a task is deleted.

5) Posting NULL pointers to queues.

Because it is now possible to post NULL pointers to queues, I had to change the API
for OSQAccept() so that it returns an error code indicating the outcome of the call.

6) Removed assignments inside if () statements.

Code like shown below:

if ((pevent->OSEventTbl[y] &= ~bitx) == 0) {
 /* … */
}

Has been replaced by:

pevent->OSEventTbl[y] &= ~bitx;
if (pevent->OSEventTbl[y] == 0) {
 /* … */
}

7) Removed MCDCs.

Code like shown below:

if (a == b && c == d && e == f) {
 /* Conditions met */
}

Has been replaced by the following code:

if (a == b) {
 if (c == d) {
 if (e == f) {
 /* Conditions met */
 }
 }
}

 44 of 77

8) Added memset() to clear RAM

Added calls to memset() to clear (i.e. initialize) the OSTCBPrioTbl[],
OSTCBTbl[], OSMemTbl[], OSFlagTbl[] and OSEventTbl[]. The
reason memset() was used was for speed and to reduce code size. These tables are
cleared during initialization to prevent a kernel aware debugger to display un-
initialized values.

In most cases, the initialization code for the different kernel objects has also been
reduced.

 45 of 77

V2.52
(2002/01/26)

This release is for the new edition of the book: MicroC/OS-II, The Real-Time Kernel, 2nd
Edition.

V2.52 fixes minor bugs reported in V2.51.

Bug V2.51-003:

In uCOS_II.H, the following code was corrected as follows:

#ifndef OS_FLAG_QUERY_EN
 #error "OS_CFG.H, Missing OS_FLAG_DEL_EN: Include code for OSFlagQuery()"

 needs to be:

#ifndef OS_FLAG_QUERY_EN
#error "OS_CFG.H, Missing OS_FLAG_QUERY_EN: Include code for OSFlagQuery()"

Bug V2.51-002:

In OS_Q.C, the following code was corrected as follows:

The function OSQQuery() contains a BUG in the following code which is towards
the end of the function.

pq = (OS_Q *)pevent->OSEventPtr;
if (pq->OSQEntries > 0) {
 pdata->OSMsg = pq->OSQOut; /* Get next message to return if available */
} else {
 pdata->OSMsg = (void *)0;
}

The CORRECT code is shown below. Note that pq->OSQOut was missing the *.

pq = (OS_Q *)pevent->OSEventPtr;
if (pq->OSQEntries > 0) {
 pdata->OSMsg = *pq->OSQOut; /* Get next message to return if available */
} else {
 pdata->OSMsg = (void *)0;
}

 46 of 77

Bug V2.51-001:

In OS_CPU_A.ASM, the following code was corrected as follows:

The NEW ISRs MUST check to see if OSIntNesting == 1 BEFORE you save the
SP in the current task's OS_TCB. The incorrect 'pseudo' code is:

 OSTCBCur->OSTCBStkPtr = SP /* Save SP onto current task's stack */

 and should be:

 if (OSIntNesting == 1) {
 OSTCBCur->OSTCBStkPtr = SP /* Save SP onto current task's stack */
 }

The reason we need this change is that we don't want to save the current value of SP if
the ISR is for a nested ISR!

V2.52 adds a few minor changes to V2.51.

OS_CORE.C:

I decided to split OSInit() into calls to multiple functions to make the code
cleaner. The new functions should be self-explanatory:

static void OS_InitEventList(void);
static void OS_InitMisc(void);
static void OS_InitRdyList(void);
static void OS_InitTaskIdle(void);
static void OS_InitTaskStat(void);
static void OS_InitTCBList(void);

In OSIntEnter(), I removed the OS_ENTER_CRITICAL() and
OS_EXIT_CRITICAL() macros because it is assumed that OSIntEnter() will
be called with interrupts disabled. Also, I added a check to make sure OSRunning
is set to TRUE.

In OSIntExit(), I added a check to make sure OSRunning is set to TRUE.

In OSTimeTick(), I added a check to make sure OSRunning is set to TRUE
before going through the OS_TCBs.

In OS_TaskStat(), I changed the equation to prevent overflowing the calculation
on very fast CPUs. The equation was written as:

CPU Usage (%) = 100 – 100 * OSIdleCtr / OSIdleCtrMax;

 47 of 77

Because the compiler would first perform the 100 * OSIdleCtr
operation, an OSIdleCtr greater than 42,949,763 would overflow the
calculation and thus report an incorrect result. The equation is now written as:

CPU Usage (%) = 100 – OSIdleCtr * (OSIdleCtrMax / 100);

This allows OSIdleCtr to reach 4,294,967,295 (i.e. 232-1) before the
equation fails. I don’t expect this to happen for a while since OSIdleCtr is
incremented in a loop. The loop contains instructions that would consume a
few CPU cycles each iteration.

OS_MBOX.C:

In OSMboxPend() (OS_MBOX.C), I moved the check for OSIntNesting at the
beginning of the function because you should NEVER call OSMboxPend() from an
ISR.

OS_Q.C:

In OSQPend() (OS_Q.C), I moved the check for OSIntNesting at the beginning
of the function because you should NEVER call OSQPend() from an ISR.

OS_SEM.C:

In OSSemPend() (OS_SEM.C), I moved the check for OSIntNesting at the
beginning of the function because you should NEVER call OSSemPend() from an
ISR.

 48 of 77

V2.51
(2001/06/09)

Two weeks ago, I released V2.05 and today, I found a bug in it (bug
V205-001). I decided to slightly change the numbering system of
releases. Complex releases (like V2.04 to V2.05) will now increase by
0.10 and minor (bug fixes or slight improvements) will now be
increasing by 0.01. This means that V2.51 is now called V2.50 and
with this bug fix, the release is V2.51. The reason this is done is to
allow you to call OSVersion() and get the proper release number. If
I didn’t change the numbering system, I would have had to call the
release with the bug correction V2.06. I was reserving such releases as
major releases.

Bug V2.51-001:
 In the NEW port file, an ISR MUST first check to see if
OSIntNesting == 1 before we save the SP in the current task
OS_TCB. This bug only applies to the NEW algorithm for the port
files and thus does NOT affect previous ports.

See New Algorithm For Ports at the end of the V2.51 notes.

 49 of 77

V2.51 is a big upgrade for µC/OS-II for the following reasons:

1) In this release, I added Event Flags (see OS_FLAG.C). Event flags are
described in AN-1007 which can be downloaded from www.Micrium.com.

2) I received numerous e-mails requesting to reduce the footprint of µC/OS-II to
a minimum. To address this issue, I added a number of #define constants
in OS_CFG.H which allow you to take out most of the features in µC/OS-II
that you might not be using. Specifically, there are #defines to remove the
code for OS???Accept(), OS???Query(), OS???Post(),
OSSchedLock() and OSSchedUnlock() and more.

3) This release comes with NEW ports for the Intel 80x86. These ports have

been revised to REMOVE the dependency on compilers. Specifically, you no
longer need to change the function OSIntCtxSw() in order to adjust the
value of the Stack Pointer (i.e. the SP) register based on compiler options.
The modification to accomplish this feature can ALSO be added to most
processor ports!

WARNING

If you use the NEW port files in your product you WILL need to change ALL
your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

4) All µC/OS-II internal functions are now prefixed with OS_ instead of OS.

This allows you to immediately determine that these functions should NOT be
called by your application. Also, these functions have been moved at the end
of their respective file to get them ‘out-of-the-way’.

5) OS_TaskIdle() now calls OSTaskIdleHook() to allow you to do such

things as STOP the CPU to conserve power when running the idle task. You
will need to add code in OSTaskIdleHook() to execute whatever is
necessary for your CPU to enter it’s power down mode.

 50 of 77

http://www.micrium.com/

6) I added OSMboxPostOpt() and OSQPostOpt(). The new calls allow

you to ‘broadcast’ a message to all tasks waiting on either a message mailbox
or a message queue. In addition, OSQPostOpt() can replace both
OSQPost() AND OSQPostFront(). This was done to further reduce the
amount of code space needed by µC/OS-II. In other words, you can start
using OSQPostOpt() INSTEAD of OSQPost() and OSQPostFront()
and thus save a significant amount of code space.

7) Added #error directives in uCOS_II.H to have the compiler complain
whenever there are missing #defines in your application. This will be
useful to ensure that you have not forgotten any of the NEW #defines
added in V2.51.

8) Previous versions required that you declared a minimum of 2 event control
blocks, 2 message queues, and 2 memory partitions. V2.51 now allows you to
reduce the RAM footprint by allowing you to declare only ONE of each of the
data structures mentioned (and well as only 1 event flag group). In other
words, you can now specify in OS_CFG.H:

#define OS_MAX_EVENTS 1
#define OS_MAX_FLAGS 1
#define OS_MAX_MEM_PART 1
#define OS_MAX_QS 1

9) All conditional compilation is now done as follows:

#if condition_name > 0

instead of:

#if condition_name

The condition name is checked for a non-zero value to enable the code.
This will allow the compiler to complain in case you forget to define
condition_name.

 51 of 77

10) V2.51 correct the four know bugs that were reported in V2.04.

V2.04-001:
The wrong argument was being passed to the call OSTaskCreateHook()
in OSTCBInit(). The bad code was:

OSTaskCreateHook(OSTCBPrioTbl[prio]);

It is now:

OSTaskCreateHook(ptcb);

V2.04-002:
The test in OSMutexPost() to see if the posting task owns the MUTEX
was incorrect. The correct test needed to have && instead of || as follows:

if (OSTCBCur->OSTCBPrio != pip &&
 OSTCBCur->OSTCBPrio != prio) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_NOT_MUTEX_OWNER);

 }

V2.04-003:
The function OSMutexDel() needed to release the priority of the PIP. The
following line was added in OSMutexDel():

OSTCBPrioTbl[pip] = (OS_TCB *)0;

V2.04-004:
The function prototype for OSMutexDel() needed to be added in
uCOS_II.H.

 52 of 77

OS_CFG.H:
Added a number of #define in OS_CFG.H to allow you to reduce the amount
of code and data space. The reason this is done using #defines instead of
simply using a librarian is to prevent having to support a large number of
librarians and also to ensure that data space is also reduced when un-needed
features (i.e. functions) also require data storage.

OS_MAX_FLAGS is used to determine how many event flags your application
will support.

OS_FLAG_EN to Enable (1) or Disable (0) code generation for ALL event flag
services and data storage. Also, OS_FLAG_WAIT_CLR_EN allows you to
Enable (1) or Disable (0) code generation for code to wait for ‘cleared’ event
flags.

The following table summarizes all the other #define constants ADDED in
V2.51. The #defines are set to 1 by default, enabling the code.

#define name in OS_CFG.H ... to enable the function:
OS_FLAG_ACCEPT_EN OSFlagAccept()
OS_FLAG_DEL_EN OSFlagDel()
OS_FLAG_QUERY_EN OSFlagQuery()
OS_MBOX_ACCEPT_EN OSMboxAccept()
OS_MBOX_POST_EN OSMboxPost()
OS_MBOX_POST_OPT_EN OSMboxPostOpt()
OS_MBOX_QUERY_EN OSMBoxQuery()
OS_MEM_QUERY_EN OSMemQuery()
OS_MUTEX_ACCEPT_EN OSMutexAccept()
OS_MUTEX_QUERY_EN OSMutexQuery()
OS_Q_ACCEPT_EN OSQAccept()
OS_Q_POST_EN OSQPost()
OS_Q_POST_FRONT_EN OSQPostFront()
OS_Q_POST_OPT_EN OSQPostOpt()
OS_Q_QUERY_EN OSQQuery()
OS_SEM_ACCEPT_EN OSSemAccept()
OS_SEM_QUERY_EN OSSemQuery()
OS_TASK_QUERY_EN OSTaskQuery()
OS_TIME_DLY_HMSM_EN OSTimeDlyHMSM()
OS_TIME_DLY_RESUME_EN OSTimeDlyResume()
OS_TIME_GET_SET_EN OSTimeGet() and OSTimeSet()
OS_SCHED_LOCK_EN OSSchedLock()and OSSchedUnlock()

Added the typedef OS_FLAGS to allow you to specify the width of flags in an
event flag group.

 53 of 77

IMPORTANT

You WILL need to add ALL of the above #define in your OS_CFG.H
files because uCOS_II.H contains error checks that will make your compiler
complain if you don’t include these #defines. The easiest way to
accomplish this is to simply copy one of the OS_CFG.H files supplied in this
release and paste it into your application and enable/disable the features you
need.

OS_CORE.C:
Added call to OS_FlagInit() in OSInit() to support event flags.

Added call to OSTaskIdleHook() in OS_TaskIdle() to allow you to do
such things as STOP the CPU to conserve power when running the idle task. You
will need to add code in OSTaskIdleHook() to execute whatever is necessary
for your CPU to enter it’s power down mode.

Added conditional compilation so that when OS_SCHED_LOCK_EN is set to 1 in
OS_CFG.H, the code for OSSchedLock() and OSSchedUnlock() will be
produced.

Corrected a bug in OS_TCBInit(). OSTaskCreateHook() was being
OSTCBPrioTbl[prio] passed INSTEAD of ptcb.
OSTCBPrioTbl[prio] didn’t contain a valid pointer when
OSTaskCreateHook() was being called.

WARNING
If you use the NEW port files in your product you will need to change ALL
your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

 54 of 77

OS_FLAG.C:
 Added event flags to µC/OS-II, see AN-1007.

OS_MBOX.C:

Added conditional compilation so that when OS_MBOX_ACCEPT_EN is set to 1
in OS_CFG.H, the code for OSMboxAccept() will be produced.

Added conditional compilation so that when OS_MBOX_POST_EN is set to 1 in
OS_CFG.H, the code for OSMboxPost() will be produced. This allows you to
reduce the amount of code space. The reason this conditional compilation has
been added is because I added the more powerful function OSMboxPostOpt()
which can emulate OSMboxPost() and also allows you to broadcast messages
to all tasks waiting on the mailbox.

Added OSMboxPostOpt() which can emulate OSMboxPost() and also
allows you to broadcast messages to all tasks waiting on the mailbox. The
#define constant OS_MBOX_POST_OPT_EN found in OS_CFG.H allows you
to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_MBOX_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSMboxQuery() will be produced. This allows you
to reduce the amount of code space.

OS_MEM.C:
Added code to test the argument addr to make sure it’s not a NULL pointer in
OSMemCreate().

Added code to test the argument pmem to make sure it’s not a NULL pointer in
OSMemGet().

Added code to test the argument pmem and pblk to make sure they are not NULL
pointers in OSMemGet().

Added conditional compilation so that when OS_MEM_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSMemQuery() will be produced. This allows you to
reduce the amount of code space.

Added code to test the argument pmem and pdata to make sure they are not
NULL pointers in OSMemQuery().

 55 of 77

Added conditional compilation to allow you to declare storage for a single
memory partition. In other words, you are now allowed to set
OS_MAX_MEM_PART to 1 in OS_CFG.H.

OS_MUTEX.C:

Added conditional compilation so that when OS_MUTEX_ACCEPT_EN is set to 1
in OS_CFG.H, the code for OSMutexAccept() will be produced. This allows
you to reduce the amount of code space.

Added conditional compilation so that when OS_MUTEX_QUERY_EN is set to 1
in OS_CFG.H, the code for OSMutexQuery() will be produced. This allows
you to reduce the amount of code space.

Fixed a bug in OSMutexDel(). The entry in OSTCBPrioTbl[] was not
being freed at the priority inheritance priority. This has been corrected.

Fixed a bug in OSMutexPost(). The current task priority was being tested for
&& instead of ||. This has been corrected.

OS_Q.C:

Added conditional compilation so that when OS_Q_ACCEPT_EN is set to 1 in
OS_CFG.H, the code for OSQAccept() will be produced. This allows you to
reduce the amount of code space.

Added conditional compilation so that when OS_Q_FLUSH_EN is set to 1 in
OS_CFG.H, the code for OSFlushAccept() will be produced. This allows
you to reduce the amount of code space.

Added conditional compilation so that when OS_Q_POST_EN is set to 1 in
OS_CFG.H, the code for OSQPost() will be produced. This allows you to
reduce the amount of code space. The reason this conditional compilation has
been added is because I added the more powerful function OSQPostOpt()
which can emulate both OSQPost() and OSQPostFront() also allows you
to broadcast messages to all tasks waiting on the queue.

Added conditional compilation so that when OS_Q_POST_FRONT_EN is set to 1
in OS_CFG.H, the code for OSQPostFront() will be produced. This allows
you to reduce the amount of code space. The reason this conditional compilation
has been added is because I added the more powerful function OSQPostOpt().

Added OSQPostOpt() which can emulate both OSQPost() and
OSQPostFront() and also allows you to broadcast messages to all tasks

 56 of 77

waiting on the queue. The #define constant OS_Q_POST_OPT_EN found in
OS_CFG.H allows you to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_Q_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSQQuery() will be produced. This allows you to
reduce the amount of code space.

Added conditional compilation to allow you to declare storage for a single
message queue. In other words, you are now allowed to set OS_MAX_QS to 1 in
OS_CFG.H.

OS_SEM.C:

Added conditional compilation so that when OS_SEM_ACCEPT_EN is set to 1 in
OS_CFG.H, the code for OSSemAccept() will be produced.

Added conditional compilation so that when OS_SEM_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSSemQuery() will be produced. This allows you to
reduce the amount of code space.

OS_TASK.C:

Added call to OS_FlagUnlink() in OSTaskDel() to support event flags.
Note that this code is conditionally compiled in when OS_FLAG_EN is set to 1.

Added conditional compilation so that when OS_TASK_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSTaskQuery() will be produced. This allows you
to reduce the amount of code space.

OS_TIME.C:

Added conditional compilation so that when OS_TIME_DLY_HMSM_EN is set to
1 in OS_CFG.H, the code for OSTimeDlyHMSM() will be produced. This
allows you to reduce the amount of code space in case you chose not to use this
function.

Added conditional compilation so that when OS_TIME_DLY_RESUME_EN is set
to 1 in OS_CFG.H, the code for OSTimeDlyResume() will be produced. This
allows you to reduce the amount of code space in case you chose not to use this
function.

Added conditional compilation so that when OS_TIME_GET_SET_EN is set to 1
in OS_CFG.H, the code for OSTimeGet() and OSTimeSet() will be
produced. This allows you to reduce the amount of code space in case you chose
not to use this function.

 57 of 77

uCOS_II.C:

Added OS_FLAG.C.

uCOS_II.H:

Changed OS_VERSION to 205.

Added constants, data types and function prototypes to support Event Flags.

Added OS_POST_OPT_??? which are the options to specify in
OSMboxPostOpt() and OSQPostOpt() calls.

The global variable OSTime is not allocated when OS_TIME_GET_SET_EN is
set to 0. This reduces the RAM footprint by 4 bytes.

Added checks at the end of uCOS_II.H to ensure that you don’t forget any
#defines that are assumed to be declared in OS_CFG.H. If you do forget any
of the required #defines in OS_CFG.H, the compiler will issue an error
message. In other words, your compiler should complain about the fact that you
didn’t specify all the necessary #defines.

 58 of 77

New Algorithm For Ports:

V2.51 comes with a new algorithm which prevents from having to adjust the stack
pointer in OSIntCtxSw() and thus making the port independent of compilers
and compiler options.

You should still be able to use your OLD (V2.04 and earlier) ports without
change (except you’ll need to add a few HOOK functions as described in the next
section.

This new algorithm affects ALL your ISRs and thus you MUST play close
attention to the following changes.

The OLD pseudo code for OSIntCtxSw() was:

OSIntCtxSw(): /* OLD */
 Adjust the SP to remove call to OSIntExit(),
 locals in OSIntExit() and the call to OSIntCtxSw();
 Save the stack pointer to OSTCBCur->OSTCBStkPtr;
 Call OSTaskSwHook()
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 CPU Stack Pointer = OSTCBHighRdy->OSTCBStkPtr;
 POP all the CPU registers from the new task’s stack;
 Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

OSIntCtxSw(): /* NEW */
 Call OSTaskSwHook()
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 CPU Stack Pointer = OSTCBHighRdy->OSTCBStkPtr;
 POP all the CPU registers from the new task’s stack;
 Execute a return from interrupt instruction;

You should notice that you NO LONGER need to adjust the SP. The reason this
is possible is because, the SP of the task that can be switched out now NEEDS to
be saved in ALL the ISRs as described below.

 59 of 77

You MUST now change ALL your ISRs. The OLD pseudo code for your ISRs
was:

YourISR(): /* OLD */
 Save processor registers onto current task’s stack;
 Call OSIntEnter() or increment OSIntNesting;
 .
 YOUR ISR Handler code;
 .
 Call OSIntExit();
 Restore processor registers from current task’s stack;
 Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

YourISR(): /* NEW */
 Save processor registers onto current task’s stack;
 Call OSIntEnter() or incr
 if (OSIntNesting == 1) {

ement OSIntNesting;

 Save the CPU’s Stack Pointer onto current task’s stack;
 }
 .
 YOUR ISR Handler code;
 .
 Call OSIntExit();
 Restore processor registers from current task’s stack;
 Execute a return from interrupt instruction;

 60 of 77

Upgrading from V2.04 (or earlier) to V2.51:

You should be able to use processor ports made for V2.04 or earlier. Because I
added new features, you will most likely need to change the following files:

1) OS_CFG.H:

You will need to ADD all the new #define constants and also, declare the
data type OS_FLAGS. As I mentioned previously, you can simply copy one
of the OS_CFG.H files supplied with this release and paste it into your own
and make the appropriate selection of features you need in your product.

2) OS_CPU_C.C:

You will need to ADD an empty function for OSTaskIdleHook() as
follows unless you actually want to add your own code to the function:

void OSTaskIdleHook (void)
{
}

3) OS_CPU_A.ASM:

If you want to use the new ALGORITHM described in the previous section,
you will need to change OSIntCtxSw(), OSTickISR() AND all your
ISRs. You should be able to use your OLD ports without change if you don’t
want to use the new algorithm.

4) OS_CPU.H:

No change.

5) Your ISRs:

If you want to use the new ALGORITHM described in the previous section,
you will need to change ALL your ISRs. You should be able to use your
OLD ports without change if you don’t want to use the new algorithm.

 61 of 77

V2.04
(2000/10/31)

MISCELLANEOUS:

Removed revision history from all the source code. The revision history is now
described in this document. This was done to reduce the amount of ‘clutter’ from
the source files.

Added OS_ARG_CHK_EN to enable (when 1) MicroC/OS-II argument checking.
By setting this configuration constant to 0, you would be able to reduce code size
and improve on performance by not checking the range of the arguments passed
to MicroC/OS-II functions. However, it is recommended to leave argument
checking enabled.

Added Mutual Exclusion Semaphores (OS_MUTEX.C) that are described in
AN1002.PDF.

Added support for OS_CRITICAL_METHOD #3 that allows the status register of
the CPU to be saved in a local variable. The status register is assumed to be saved
by OS_ENTER_CRITICAL() in a local variable called cpu_sr of type
OS_CPU_SR. The data type OS_CPU_SR is assumed to be declared in
OS_CPU.H. The status register (and thus the state of the interrupt disable flag) is
assumed to be restored by OS_EXIT_CRITICAL() from the contents of this
variable. The macros would be declared as follows:

 #define OS_ENTER_CRITICAL() (cpu_sr = OSCPUSaveSR())
 #define OS_EXIT_CRITICAL() (OSCPURestoreSR(cpu_sr))

Note that the functions OSCPUSaveSR() and OSCPURestoreSR()
would be written in assembly language and would typically be found in
OS_CPU_A.ASM (or equivalent).

The check for OSIntNesting in all µC/OS-II services is now being done
without disabling interrupts in order to reduce interrupt latency. In other words,
the following code:

 OS_ENTER_CRITICAL();
 if (OSIntNesting > 0) {
 .
 .
 OS_EXIT_CRITICAL();
 }

Has been replaced by:

 62 of 77

 if (OSIntNesting > 0) {
 .
 .
 }

The reason is that ALL currently known processors will treat this byte size
variable (OSIntNesting) indivisibly.

OS_CORE.C:
Moved all local variables to uCOS_II.H making them all global variables. This
helps when testing.

Calls to OSTaskCreate() and OSTaskCreateExt() in OSInit() now
return (void) to indicate that the return value is not being used. This prevents
warnings from LINT.

Although not critical, OSInit() was optimized for speed.

Added OSInitHookBegin() at the beginning of OSInit() to allow for a
processor port to provide additional ‘OS” specific initialization which would be
done BEFORE MicroC/OS-II is initialized.

Added OSInitHookEnd() at the end of OSInit() to allow for a processor
port to provide additional ‘OS” specific initialization which would be done
AFTER MicroC/OS-II is initialized.

Initialized .OSEventType to OS_EVENT_TYPE_UNUSED in OSInit().

Added boundary check for OSIntNesting in OSIntEnter() to prevent
wrapping back to 0 if OSIntNesting is already at 255.

Added boundary check on OSIntNesting in OSIntExit() to prevent
wrapping back to 255 if OSIntNesting is already at 0.

Changed the test for rescheduling in OSIntExit() and OSSched() from:

if ((--OSIntNesting | OSLockNesting) == 0) {

to

if ((OSIntNesting == 0) && (OSLockNesting == 0)) {

for sake of clarity.

 63 of 77

Removed unreachable code in OSTaskStat() for CPU usage > 100%.

Added call to OSTCBInitHook() in OSTCBInit() to allow user (or port)
specific TCB extension initialization.

Moved the increment of OSTimeTick() immediately after calling
OSTimeTickHook().

Made OSTime volatile.

OS_MBOX.C:

Removed checking of pevent from the critical section to reduce interrupt
latency.

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSMBoxDel() to delete a message mailbox and free up its Event Control
Block. All tasks pending on the mailbox will be readied. This feature is enabled
by setting OS_MBOX_DEL_EN to 1.

Changed test:

if (pevent->OSEventGrp)
to

if (pevent->OSEventGrp != 0x00).

OS_MEM.C:

Moved the local variables OSMemFreeList and OSMemTbl[] to
uCOS_II.H.

Added code to initialize all the fields of the last node in OSMemInit().

OS_MUTEX.C:

Added services to support Mutual Exclusion Semaphores that are used to reduce
priority inversions.

OS_Q.C:

Removed checking of pevent from the critical section to reduce interrupt
latency.

 64 of 77

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSQDel() to delete a message queue and free up its Event Control
Block. All tasks pending on the queue will be readied. This feature is enabled by
setting OS_Q_DEL_EN to 1.

Changed test:

if (pevent->OSEventGrp)
to

if (pevent->OSEventGrp != 0x00).

Moved the definition of the data type OS_Q to uCOS_II.H.

OS_SEM.C:

Removed checking of pevent from the critical section to reduce interrupt
latency.

Added OSSemDel() to delete a semaphore and free up its Event Control Block.
All tasks pending on the semaphore will be readied. This feature is enabled by
setting OS_SEM_DEL_EN to 1.

Changed test:

if (pevent->OSEventGrp)
to

if (pevent->OSEventGrp != 0x00).

OS_TASK.C:

Task stack is now cleared in OSTaskCreateExt() when either options
OS_TASK_OPT_STK_CHK or OS_TASK_OPT_STK_CLR is set. The new code
is:

if (((opt & OS_TASK_OPT_STK_CHK) != 0x0000) ||
 ((opt & OS_TASK_OPT_STK_CLR) != 0x0000)) {

OSTaskCreateHook() has been removed from OSTaskCreate() and
OSTaskCreateExt() and moved to OSTCBInit() so that the hook is called
BEFORE the task is made ready-to-run. This avoids having the possibility of
readying the task before calling the hook function.

If you don’t specify any Mailboxes (OS_MBOX == 0), Queues (OS_Q == 0),
Semaphores (OS_SEM == 0) or Mutexes (OS_MUTEX == 0) in OS_CFG.H
in order to create a minimal system, OSTaskChangePrio() and
OSTaskDel() will no longer reference OSTCBEventPtr.

 65 of 77

OS_TIME.C:

Added cast to INT16U for all references of tick in OSTimeDlyHMSM().

uCOS_II.C:

Added OS_MUTEX.C.

uCOS_II.H:

Changed OS_VERSION to 204.

Moved all ‘local’ variables from OS_MEM.C, OS_Q.C and OS_TASKS.C to
simplify debugging and unit testing.

Added constants, data types and function prototypes to support Mutual Exclusion
Semaphores.

 66 of 77

This page is intentionally blank.

 67 of 77

V2.03
(1999/09/09)

MISCELLANEOUS:

The distribution of µC/OS-II now assumes the Borland C/C++ V4.51 or higher
compiler instead of the V3.1 compiler. The code should, however, compile and
run using V3.1.

This release contains a slightly different directory structure. The name of the
compiler is added to the directory structure in order to support multiple compilers
and have the same directory structure for all of these.

\SOFTWARE\uCOS-II\SOURCE
 Contains the source files for the processor independent code of uC/OS-II.

\SOFTWARE\uCOS-II\Ix86L\BC45
Contains the source files for the 80x86 real mode, large model port. The
port now contains the function OSTaskStkInit_FPE_x86() which
needs to be called before you create a task that will use Borland C/C++'s
floating-point emulation (FPE) library. See application note AN-1001
found on www.Micrium.com.

\SOFTWARE\uCOS-II\Ix86L-FP\BC45
Contains the source files for the 80x86 real mode, large model port. This
port also contains hardware floating-point support. In other words,
µC/OS-II performs a context switch on the floating-point registers as well
as the integer registers. This port was not present on the original
distribution of µC/OS-II (i.e. V2.00).

\SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #1

\SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST
Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #1. To build the executable for example #1,
simply type MAKETEST at the DOS prompt. You may have to change
TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E:\BC45 directory. To execute example
#1, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX2_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #2

\SOFTWARE\uCOS-II\EX2_x86L\BC45\TEST

 68 of 77

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #2. To build the executable for example
#2, simply type MAKETEST at the DOS prompt. You may have to
change TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is
located. My compiler was located in the E:\BC45 directory. To execute
example #2, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX3_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #3

\SOFTWARE\uCOS-II\EX3_x86L\BC45\TEST
Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #3. To build the executable for example #3,
simply type MAKETEST at the DOS prompt. You may have to change
TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E:\BC45 directory.

To execute example #3, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX4_x86L.FP\BC45\SOURCE
Contains the source code for the sample code of Example #4

\SOFTWARE\uCOS-II\EX4_x86L\BC45\TEST
Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #4. Example #4 demonstrate the use of
Ix86L-FP, the port that saves/restores the 80x86's floating-point
registers during a context switch. This of course applies for 80x86
processors having a floating-point unit. You may have to change
TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E:\BC45 directory. To execute example
#1, type TEST at the DOS prompt.

\SOFTWARE\BLOCKS\PC\BC45
Contains the source files for the PC services used to display characters on
the screen, read the keyboard etc.

 69 of 77

EXAMPLES:

Example #1 (V2.00)

TEST.C was previously called EX1L.C

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

The floating-point code in TaskStart() has been removed so that the
task only executes integer arithmetic instructions.

Example #2 (V2.00)

TEST.C was previously called EX2L.C
Added TaskStartCreateTasks() to create all the application tasks.
TaskStart() now uses the Borland C/C++ Floating-Point Emulation
library and thus, the stack needs to be 'preconditioned' by calling the
function OSTaskStkInit_FPE_x86() (see www.Micrium.com,
AN-1001).

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

Example #3 (V2.00)

TEST.C was previously called EX3L.C

Added TaskStartCreateTasks() to create all the application tasks.

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

Floating-point operations have been replaced with integer operations.

Example #4 (V2.00)

Example #4 is a new example using hardware assisted floating-point.

TEST.C was previously called EX4L.C

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

 70 of 77

PC Services (V2.00)

PC.C:
Functions are now listed in alphabetical order in the file.

PC_ElapsedStart() and PC_ElapsedStop() now protect the
critical section of code that accesses the timer ports.

PC_VectGet() and PC_VectSet() no longer depend on the Borland
C/C++ functions getvect() and setvect(). This should make these
functions more portable.

Changed the name of PC_DispClrLine() to PC_DispClrRow().

Added function PC_DispClrCol().

The following function now cast MK_FP() to (INT8U far *):
 PC_DispChar()

PC_DispClrLine()
PC_DispClrScr()
PC_DispStr()

PC_ElapsedStop(), cast inp() to INT8U.

PC_GetKey(), cast getch() to INT16S.

PC.H:
Function prototypes are now listed in alphabetical order.

Added prototype for PC_DispClrCol().

 71 of 77

OS_CORE.C:
Changed the return type of OSEventTaskRdy() from void to INT8U to
return the priority of the task readied even though the current version of
MicroC/OS-II doesn't make use of this feature. This change was done to support
future versions.

Moved OSDummy() from OS_TASK.C to OS_CORE.C to be able to call
OSDummy() from other services.

OS_MBOX.C:

Added check in OSMboxPost() to see if the caller is attempting to post a NULL
pointer. By definition, you should NOT send a NULL pointer message. If you
attempt to post a NULL pointer, OSMboxPost() will return
OS_ERR_POST_NULL_PTR.

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:
 OSMboxPost()
 OSMboxQuery()
Note that OSMboxAccept() will return a NULL pointer because it doesn't
provide the capability of returning an error code.

OSMboxPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

OS_Q.C:
Added check in OSQPost() and OSQPostFront() to see if the caller is
attempting to post a NULL pointer. By definition, you should NOT send a NULL
pointer message. If you attempt to post a NULL pointer, OSQPost() and
OSQPostFront() will return OS_ERR_POST_NULL_PTR.

 72 of 77

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:
 OSQFlush()
 OSQPost()
 OSQPostFront()
 OSQQuery()
Note that OSQAccept() simply returns a NULL pointer because it doesn't
provide the capability of returning an error code.

OSQPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

OS_SEM.C:

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:
 OSSemPost()
 OSSemQuery()
Note that OSSemAccept() returns 0 because it doesn't provide the capability to
return an error code.

OSSemPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

OS_TASK.C:

Moved OSDummy() to OS_CORE.C

uCOS_II.H:

Added error code OS_ERR_POST_NULL_PTR (value is 3).

Changed the return type of OSEventTaskRdy() from void to INT8U to
return the priority of the task readied.

Added function prototype for OSDummy().

Added error code OS_ERR_PEVENT_NULL (value is 4)

 73 of 77

V2.02
(1999/07/18)

OS_MBOX.C:

Removed last else statement in OSMboxPend() because the code is
unreachable.

OS_Q.C:
Removed last else statement in OSQPend() because the code is unreachable.

OS_TASK.C:
OSTaskCtr is always included.

uCOS_II.C:
Added check for definition of macro OS_ISR_PROTO_EXT so that the prototype
of OSCtxSw() and OSTickISR() can be changed based on compiler specific
requirements. To use a different prototype, simply add:

#define OS_ISR_PROTO_EXT
in OS_CPU.H of the port and then define the new prototype format for
OSCtxSw() and OSTickISR() in OS_CPU.H of the port.

OSTaskCtr is always included. Previously it was conditionally compiled only
if OS_TASK_CREATE_EN, OS_TASK_CREATE_EXT_EN or
OS_TASK_DEL_EN was set to 1. It turns out that you MUST always have either
OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN set to 1 anyway!

 74 of 77

This page is intentionally blank.

 75 of 77

V2.01
(1999/07/15)

OS_CORE.C:

Changed for loop inside OSEventWaitListInit() to inline code for
speed. This eliminates the loop overhead.

The argument stk_size in OSTCBInit() has been changed from INT16U to
INT32U to accommodate large stacks.

OS_MBOX.C:
Changed 'for' loop inside 'OSMboxQuery()' to inline code for speed. This
eliminates the loop overhead.

OS_Q.C:
Added typecast to avoid compiler error/warning:
 pq = (OS_Q *)pevent->OSEventPtr;
 ^^^^^^^^
Affected functions:
 OSQAccept()
 OSQFlush()
 OSQPend()
 OSQPost()
 OSQPostFront()

Changed for loop inside OSQQuery() to inline code for speed. This
eliminates the loop overhead.

Added msg = (void *)0; in if (OSIntNesting > 0) case.

OS_SEM.C:
Second if statement in function OSSemPend() needed to be and if/else
clause.

 76 of 77

OS_TASK.C:

Stack filling is now done using the ANSI C function memset() for speed.

Copying of the OS_TCB structure in OSTaskQuery() is now done using
memcpy() for speed.

Function OSTaskStkChk() now cast the value 0 to (OS_STK)0 in while
loops.

uCOS_II.C:
Changed the comment for OSTCBStkSize in the OS_TCB structure to indicate
that the size is in number of elements and not bytes.

The argument stk_size in OSTCBInit() has been changed from INT16U to
INT32U to accommodate large stacks.

 77 of 77

	© Copyright 2006, Micriµm

