Morgan Kaufmann Publishers

e COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

| Chapter 4

| The Processor

With Contribution from Prof. M. J. Irwin of PSU

| Chapter Roadmap

How to design an ALU?
MIPS datapath
Pipelining

Hazards

Real stuff

Chapter 4 — The Processor — 2

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers

| Introduction

CPU performance factors

Instruction count
Determined by ISA and compiler

CPIl and Cycle time
Determined by CPU hardware
We will examine two MIPS implementations
A simplified version
A more realistic pipelined version
Simple subset, shows most aspects
Memory reference: Iw, sw
Arithmetic/logical: add, sub, and, or, slt
Control transfer: beq, j

Chapter 4 — The Processor — 3

| Design of a Simple ALU

2 inputs, operation and an output

zero ovf

m (operation)

Chapter 4 — The Processor — 4

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers

Sign Mag. Two’s Comp. | One’s Comp.
1000 = -8
1111 =-7 1001= -7 1000 = -7
1110 = -6 1010=-6 1001 = -6
1101=-5 1011 =-5 1010=-5
1100 = -4 1100 = -4 1011 = -4
1011 =-3 1101 =-3 1100 = -3
1010 = -2 1110=-2 1101 =-2
1001 =-1 111=-1 1110=-1
1000 = -0 1111 =-0
0000 = +0 0000 =0 0000 = +0
0001 = +1 0001 = +1 0001 = +1
0010 = +2 0010 = +2 0010 = +2
0011 =+3 0011 =+3 0011 =+3
0100 = +4 0100 = +4 0100 = +4
0101 =+5 0101 =+5 0101 =+5
0110 = +6 0110 = +6 0110 = +6
0111 = +7 0111 = +7 0111 = +7

| Possible Representations

Issues:
balance
number of zeros

ease of operations

Which one is best?
Why?

0000 0000
0000 0000
0000 0000

0111 1111
0111 1111
1000 0000
1000 0000
1000 0000

1111 1111
1111 1111
1111 1111

0000
0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000
0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000
0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000 0000
0000 0000
0000 0000

1111 1111
1111 1111
0000 0000
0000 0000
0000 0000

1111 1111
1111 1111
1111 1111

0000,,,
0001,,,
0010,,,

1110,
1111,
0000,,,
0001,,,
0010y,

1101,
1110,
1111,

| MIPS Representations

i 32-bit signed numbers (2's complement):

nonon
+ + 0

ten maxint

+ 2,147 ,483,646,,,
+ 2,147,483,647
2,147 ,483,648,,,
— 2,147%,483,647,,,
— 2,147)483,646,,,

ten

minint
Sten

Zten
1

ten

What if the bit string represented addresses?

need operations that also deal with only positive (unsigned)
integers

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers 7 November, 2016

|Two's Complement Operations

| Negating a two's complement number — complement
all the bits and then add a 1
remember: “negate” and “invert” are quite different!
Starting from LSb, all 0’'s as is, first 1 as is, then invert

Converting n-bit numbers into numbers with more than
n bits:
MIPS 16-bit immediate gets converted to 32 bits for arithmetic

sign extend - copy the most significant bit (the sign bit) into the
other bits

0010 -> 0000 0010

1010 -> 1111 1010

sign extension versus zero extend (Ib vs. 1bu)

Addition & Subtraction

Just like in grade school (carry/borrow 1s)

0111 0111 0110
+ 0110 - 0110 - 0101
101 0001 0001

Two's complement operations are easy
do subtraction by negating and then adding

0111 - 0111
- 0110 - + 1010
0001 "1 0001

Overflow (result too large for finite computer word)

e.g., adding two n-bit numbers does not yield an n-bit number
0111

+ 0001
000

Chapter 4 — The Processor 4

Morgan Kaufmann Publishers

| carry_in

A — 1 bit

Full ., S
B Adder

carry_out

| Building a 1-bit Binary Adder

A B carry_in | carry_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S =A xor B xor carry_in
carry_out = A&B | A&carry_in | B&carry_in

()

How can we use it to build a 32-bit adder?

How can we modify it easily to build an adder/subtractor?

I Co-carry in

| Ao——>

Bo

1-bi
FAF™ S,

2

1-bi
FA[> S,

L

1-bi
FAP> S,

'

l Ca1

1-bi
FA[™ S3

l Ccgp=carry_out

| Building 32-bit Adder

Just connect the carry-out of
the least significant bit FA to the
carry-in of the next least
significant bit and connect. . .

Ripple Carry Adder (RCA)

advantage: simple logic, so small
(low cost)

disadvantage: slow and lots of
glitching (so lots of energy
consumption)

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers

| A 32-bit Ripple Carry Adder/Subtractor

| add/sub
Remember 2’s

complement is just

complement all the bits

control

(0=add,1=sub) :D B, if control = 0,
BO

1B, if control = 1

add a 1 in the least
significant bit

A 0111 -
B - 0110 —» +

0111

l co=carry_in
Ay —| 1-bi
:}D_' FAI™ So
By l c
A, —1 1-bi
— FA[™ S;
B. —)) D
1 l C2
A, —] 1-bi
FA[™ S,
B, T l o
l Ca1
Ag— 1-bi
—}j > FA[™ Sa
B3l

l Ccgp=carry_out

| A 32-bit Ripple Carry Adder/Subtractor

| Remember 2’s add/sub

complement is just
complement all the bits

control

(0=add,1=sub) :D B, if control = 0
B

0 1B, if control = 1

add a 1 in the least
significant bit

A 0111 — 0111
B - 0110 - +1001
0001 a1

1 0001

l co=carry_in

Ao 1bi
SEe i
By 7 l c,
A, —] 1bi
I FA[> S,
B. —)) >
1 l 5
A, | 1bi
TS A
B, T l c
l Ca1
Ag—| 1-bi
—E > FA[™ Sa
Bat

l Ccg=carry_out

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers

Overflow: the result is too large to represent in the

number of bits allocated

When adding operands with different signs, overflow
cannot occur! Overflow occurs when

adding two positives yields a neg

or, adding two negatives gives a positive

ative

| Overflow Detection and Effects

or, subtract a negative from a positive gives a negative

or, subtract a positive from a negative gives a positive
On overflow, an exception (interrupt) occurs

Control jumps to predefined address for exception

Interrupted address (address of instruction causing the overflow)

is saved for possible resumption

Don't always want to detect (interrupt on) overflow

add/subt carry_in

A i—\

1/

) >

)

>
-

1-bit
FA

In

5 _)D—J

add/subt carry_out

| A Simple ALU Cell with Logic Op Support

result

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers

| An Alternative ALU Cell

o [

sl

0 > t

carry_in

|

B =

EA [T result

carry_out

| The Alternative ALU Cell's Control Codes
| s2 | sl sO |c_in| result function
0 0 0 0 |A transfer A
0 0 0 1 [A+1 increment A
0 0 1 0 |A+B add
0 0 1 1 [A+B+1 |add with carry
0 1 0 0 |A-B-1 |subtwith borrow
0 1 0 1 |A-B subtract
0 1 1 0 |A-1 decrement A
0 1 1 1 |A transfer A
1 0 0 X |AorB or
1 0 1 X |AxorB xor
1 1 0 x |Aand B |and
1 1 1 x |'A complement A

Chapter 4 — The Processor

7 November, 2016

Morgan Kaufmann Publishers 7 November, 2016

| Modifying the ALU Cell for st

| add/subt carry_in op
A i—\ N
{ /
) > .
) o+
_D 3 [T result
—
— 1-bit
less 7
add/subt carry_out

| Overflow Detection

| Overflow occurs when the result is too large to
represent in the number of bits allocated
adding two positives yields a negative
or, adding two negatives gives a positive

or, subtract a negative from a positive gives a
negative

or, subtract a positive from a negative gives a positive
On your own: Prove you can detect overflow by:

Carry into MSB xor Carry out of MSB
0 1 1 1 7 1 1 0 0o -4
+ 0 0 1 1 3 + 1 0 1 1 -5

Chapter 4 — The Processor 9

Morgan Kaufmann Publishers

op

dd/subt——
AO

Bo

set

result,

H

Tesulty, sub)

4’—D_. overflow

Modifying the ALU for Overflow

(Testt; Modify the most

1
H>

significant cell to
determine overflow
output setting

zero

Enable overflow bit
setting for signed
arithmetic (add, addi,

Chapter 4 — The Processor

7 November, 2016

10

