Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 2

Memory Hierarchy Design

Introduction

uonanpou|

Programmers want unlimited amounts of memory with

low latency

Fast memory technology is more expensive per bit than

slower memory

Solution: organize memory system into a hierarchy

= Entire addressable memory space available in largest, slowest
memory

= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

Temporal and spatial locality insures that nearly all

references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor

=1
Memory Hierarchy g
Q
i
=1
[E]
€ | Memory N
= Mamary lom[mm'
: — Ol
L T - —
reberence relerence TelRnCE
Sre 1000 bytes “rp 266 KB 2-4 M8 4-16.GB 4-16T8
L [1 F-M0n 10-30m S0-100 s S-80ms

) Memiory hasarchy for sarves

@

-8

[Lol 1 Loz

Memcry.

relerence Cache Cache relerence e
nhesencn rederence

Stz 500 byles CL T 20-512 M0 4~ Gl

Spesd 500ps 2rs 10-20ms 50-100 ns 25018

11 Marmory tierarchry for a personal motile diice

Memory Performance Gap

uononpou|

100,000

10,000 /

§ 1,000
§ Prooe:s:x/,/
=
& 100 /
10 W
1 T T T T T
1980 1985 1990 1995 2000 2005 2010

Year

Memory Hierarchy Design

uonanpou|

= Memory hierarchy design becomes more crucial
with recent multi-core processors:
= Aggregate peak bandwidth grows with # cores:

= Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
= 25.6 billion 64-bit data references/second +
= 12.8 billion 128-bit instruction references
= =409.6 GB/s!

= DRAM bandwidth is only 6% of this (25 GB/s)

= Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

Performance and Power

uononponu|

= High-end microprocessors have >10 MB on-chip
cache
= Consumes large amount of area and power budget

Terminology

= A Block: The smallest unit of information
transferred between two levels.

= Hit: Item is found in some block in the
upper level (example: Block X)

= Miss: Item needs to be retrieved from a

block in the lower level (Block Y)
= Miss Rate =1 - (Hit Rate)

= Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Cache operation

= Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Cache Organization: Placement

Direct mapped cache: A block can be placed in only one
l_t_('gp_h_ﬁl_ﬂfocatl,on cache block frame), given by the mapping
unction:

index= (Block address) MOD (Number of blocks in
cache)

Eully associative cache: A block can be placed anywhere
Jh_(—_rm cache. (no mapping function).
Set associative_cache: A block can be placed in a)
restricted set of places, or cache block frames. A setis a
group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)

If there are n blocks in a set the cache placement is called
n-way set-associative.

Cache Miss

= Compulsory: The very first access to a
block is always a miss— Occurs even if you
have an infinite cache

m Capacity: The cache is not big enough to
hold all the blocks required for the
execution of the program— A bigger cache
helps

= Conflict: If not a fully associative, a block
may be discarded and brought back again.

Cache Organization: Placement

= Direct mapped Cache

Placement: DM

Byte address
JRERER

3130 ..431211 .21 0
20 10 Data
Ta b ,
index
Can cache up to

2% pytes= 4GB index valid Tag
of memory .

1K = 1024 Blocks
Each block = one word

Mapping function: *

Cache Block frame number = 1o
(Block address) MOD (1024) oz

1023

i.e. index field or
10 low bit of block address

Block Address =30 bits Block 0

Placement DM

Rddress (showing bit positions)
31...06 15..43210

Block offset

16 bits 128 bits

v “Tag ba

Block Address = 28 bits

Block offset
= abits

Cache Organization

Futy ansocarv: Evrmct st St amceiative

e 13 can g0 oo 12 e g Bhack 12 ean o
ayuncon ok inkn thock 4 anpwbae 5ot &
(17 et By {12 mesd 4}

Bloch Q1234567 ek 01234507 Puck 01234847

ok fravm ndrs
Mok [EEEEEE]
O G13348 FAAEATH

S

1223229322234
1234488

Cache Organization

= Each block frame in cache has an address tag.

= The tags of every cache block that might contain the required
data are checked in parallel.

= Avalid bit is added to the tag to indicate whether this entry
contains a valid address.

= The address from the CPU to cache is divided into:
= A block address, further divided into:
= An index field to choose a block set in cache.
. (no index field when fully associative).
= Atag field to search and match addresses in the selected set.
= A block offset to select the data from the block.

Block Address Block
Offset

Cache Organization

Physical Memory Address Generated by CPU

Block Address Block
Index Offset

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

\

Tag size = address size - index size - offset size
Number of Sets

Mapping function:

Cache set or block frame number = Index =

= iBIock Addressl MOD iNumber of Setsi

Set Associative: 4KB 4Way

Address

3130...12111098...3210

22 g

1024 block frames j:l
Each block = one word Index v Tag Dam v Tag Dam v Tag Data Vv Tag patm

. \
4-way set associative :
1024 / 4= 256 sets
253
254
Can cache up to s L
2% pytes = 4GB B
of memory g)
BlockcsdressTal 0 i Block offset 4-10-1 multiplexar
Index = 2bits
Mapping Function: Cache Set Number = index= (Block address) MOD (256" pata

Miss Rate

= Associativity: 2-way 4-way 8-way

= Size LRU Random LRU Random LRU Random
= 16KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

= 64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

= 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

