
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory
 Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references
 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduction

6Copyright © 2012, Elsevier Inc. All rights reserved.

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

Introduction

7

Terminology

 A Block: The smallest unit of information
transferred between two levels.

 Hit: Item is found in some block in the
upper level (example: Block X)

 Miss: Item needs to be retrieved from a
block in the lower level (Block Y)
 Miss Rate = 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Cache operation

 Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Copyright © 2012, Elsevier Inc. All rights reserved.

9

Cache Organization: Placement
1 Direct mapped cache: A block can be placed in only one

location (cache block frame), given by the mapping
function:

index= (Block address) MOD (Number of blocks in
cache)

2 Fully associative cache: A block can be placed anywhere
in cache. (no mapping function).

3 Set associative cache: A block can be placed in a
restricted set of places, or cache block frames. A set is a
group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is called
n-way set-associative.

10

Cache Miss

 Compulsory: The very first access to a
block is always a miss– Occurs even if you
have an infinite cache

 Capacity: The cache is not big enough to
hold all the blocks required for the
execution of the program– A bigger cache
helps

 Conflict: If not a fully associative, a block
may be discarded and brought back again.

Copyright © 2012, Elsevier Inc. All rights reserved.

11

Cache Organization: Placement

 Direct mapped Cache

CSE4201

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
0

0

C a c h e

M e m o ry

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

12

Placement: DM

2 0 1 0

B y te

o ffs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a ta

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0

1K = 1024 Blocks

Each block = one word

Can cache up to

232 bytes = 4 GB

of memory

Mapping function:

Cache Block frame number =

(Block address) MOD (1024)

i.e. index field or

10 low bit of block address

Block offset

= 2 bits

Block Address = 30 bits

Tag = 20 bits Index = 10 bits

Byte address

13Fall 2009CSE4201

Placement DM
A d d re s s (s ho w in g b it p o s itio n s)

1 6 1 2 B yte

o ffs e t

V T ag D a ta

H it D a ta

1 6 32

4 K

e n trie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tInd ex

T a g

3 1 16 1 5 4 3 2 1 0

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset

= 4 bits

14

Cache Organization

15

Cache Organization

 Each block frame in cache has an address tag.

 The tags of every cache block that might contain the required
data are checked in parallel.

 A valid bit is added to the tag to indicate whether this entry
contains a valid address.

 The address from the CPU to cache is divided into:
 A block address, further divided into:

 An index field to choose a block set in cache.

 (no index field when fully associative).

 A tag field to search and match addresses in the selected set.

 A block offset to select the data from the block.

Block Address Block

OffsetTag Index

16

Cache Organization

Block Address Block

OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size

Physical Memory Address Generated by CPU

Mapping function:

Cache set or block frame number = Index =

= (Block Address) MOD (Number of Sets)

Number of Sets

17

Set Associative: 4KB 4Way
Address

2 2 8

V TagIndex

0

1

2

253

254

255

D ata V Tag Data V T ag Data V T ag D ata

3222

4 - to -1 m ultip lexo r

H it D a ta

123891011123031 0

1024 block frames

Each block = one word

4-way set associative

1024 / 4= 256 sets

Can cache up to

232 bytes = 4 GB

of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset

= 2 bits

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

18

Miss Rate

 Associativity: 2-way 4-way 8-way

 Size LRU Random LRU Random LRU Random

 16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

 64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

