
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to minimize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6

MIPS 5-Stage Pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

7

Hazards

 Structural hazards

 Data hazards

 Control hazards

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Multiple Function Units

Copyright © 2012, Elsevier Inc. All rights reserved.

9

Data Dependence

 Loop: L.D F0,0(R1)

 ADD.D F4,F0,F2

 S.D F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

Copyright © 2012, Elsevier Inc. All rights reserved.

10Copyright © 2012, Elsevier Inc. All rights reserved.

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use renaming techniques

Introduction

11Copyright © 2012, Elsevier Inc. All rights reserved.

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controller
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

12

Control Dependence

 Must preserve exception
behavior.

 We should not change
the exception behavior of
the program.

 We often relax this to
“reordering of instruction
must not raise new
exceptions”

 DADDU R2,R3,R4

 BEQZ R2,L1

 LW R1,0(R2)

 L1: ……

 No data dependence
prevents us from
exchanging BEQZ
and LW, but might
result in memory
protection exception

Copyright © 2012, Elsevier Inc. All rights reserved.

13Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
 OR instruction dependent

on DADDU and DSUBU
 Preserving the order alone

is not sufficient (must have
the correct value in R1)

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

Introduction• Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L: …
OR R7,R1,R8

• Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

