Data Dependence

Loop: L.D
ADD.D
SD
DADDUI
BNE

FO,0(R1)
F4,FO,F2
F4,0(R1)
R1,R1,#-8
R1,R2,Loop

(@]
. . . o
Compiler Techniques for Exposing ILP 2
[}
S . ol
= Pipeline scheduling S8
=}
= Separate dependent instruction from the source =)
instruction by the pipeline latency of the source 3
instruction
Example: No dependence
for (i=999; i>=0; i=i-1) between iterations
X[i] = X[i] +s; MIPS code?

Instruction producing result

Instruction using result Latency in clock cycles

FPALU op Another FPALU op k)
FPALU op Stowe double

Load double FPALU op 1
Lo double Store double il

Assembly Code XLHI=X[11+A

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
) F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,Loop

For(i=1000;i>0;i--)

sanbjuydsay Ja|idwod

aRWwN e

. . for(i=1000; i>0;i--) g
Pipeline Stalls XLH1=xLi1+A 2
)
4
Loop: L.D FO,0(R1) 1 @
stall 2 B
ADD.D F4,FO,F2 3 g
stall 4 @
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall (because the next instruction is branch) 8
BNE R1,R2,Loop 9
stall 10
Instruction producing result Instruction using result Latency in clock cycles
FPALU op Another FP ALU op 3
FPALU op Stone double 2
Load double FP ALU op 1
Lo double: Stone double L

)
. . . S
Pipeline Scheduling E
o
H
Scheduled code: §
Loop: L.D F0,0(R1) 1 E
DADDUI R1,R1,#-8 2 =
ADD.D F4,F0,F2 3 7]
stall 4
stall 5
S.D F4,8(R1) 6
BNE R1,R2,Loop > Now 6 7
Instruction producing result Instruction using result Latency in clock cycles
FPALU op Another FP ALU op 1
FPALU op Stone double 2
Load double FPALU op 1
Lol double Store double 1]
M<
)
- =}
Loop Unrolling E]
@
: 7
= Loop unrolling =
= Unroll by a factor of 4 (assume # elements is divisible by 4) 2
= Eliminate unnecessary instructions 5

Loop: L.D FO,0(R1)
ADD.D F4,FO,F2_
sS.D F4,0(R1) ;drop DADDUI-& BNE

ADD.D F8,F6,F2

ADD.D FI12F10,F2 - p
SD F12,-16(R1) ;drop DADDUI & BNE

\L.D F14.-24R1)
ADD.D F16F14,F2 ~
s.D F16,-24(R1)
ADDUI R1,R1#-32

BNE R1,R2,Loop

SN
1 stall
\ sD F8,-8(R1) ;drop DADDUI & BN
\\ LD F10,-16(R1) ~

LD F6,-8(R1) — 2stalls

= note: number
of live registers
vs. original loop

Loop Unrolling/Pipeline Scheduling

= Pipeline schedule the unrolled loop:

sanbiuyoa) Jadwod

Loop: LD FO,0(R1)
LD F6,-8(R1)
LD F10,-16(R1) o
LD F14,-24(R1) Loop iterations are

ADD.D F4,FO,F2 independent

ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
sD F4,0(R1)
sD F8,-8(R1)
DADDUI R1,R1,#-32
SD F12,16(R1)
sD F16,8(R1)
BNE R1,R2,Loop

Strip Mining

= Unknown number of loop iterations?
= Number of iterations = n
= Goal: make k copies of the loop body

= Generate pair of loops:
» First executes n mod k times
= Second executes n/ k times
= “Strip mining”

sanbiuyoa) Jajdwod

Loop Level Parallelsim

= Loop-Level Parallelism (LLP) analysis focuses
on whether data accesses in later iterations of a
loop are data dependent on data values
produced in earlier iterations and possibly
making loop iterations independent.
For(i=0;i<100;i++)
X[i]=x[i]+A;

= the computation in each iteration is independent of the
previous iterations and the loop is thus parallel. The use
of X[i] twice is within a single iteration.
~ Thus loop iterations are parallel (or independent from each
other).

Loop Level Parallelsim

= Loop-carried Dependence: A data dependence between

different loop iterations (data produced in earlier iteration used

in a later one).
= LLP analysis is important in software optimizations such as
loop unrolling since it usually requires loop iterations to be
independent.
= LLP analysis is normally done at the source code level or

close to it since assembly language and target machine code
generation introduces loop-carried name dependence in the

registers used for addressing and incrementing.

= Instruction level parallelism (ILP) analysis, on the other hand,

is usually done when instructions are generated by the
compiler

Loop Level Parallism ™™
for (i=1; i<=100; i=i+1) { e '
A[i+1] = Afi] + C[i]; /* S1%/ Carried. g

B[i+1] = B[i] + A[i+1];} /* 52 */ Depsndens 4

Dependency Graph

S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).

- does not prevent loop iteration parallelism.
= Sl uses avalue computed by S1 in an earlier iteration, since iteration i

computes A[i+1] read in iteration i+1 (loop-carried dependence
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

. These two dependencies are loop-carried spanning more than one
iteration preventing loop parallelism.

Loop Level parallelism

» for(i=0;i<=100;i++)
. Ali] = Ali] + BI[iJ; [* S1 *
. B[i+1] = C[i] + D[i; /*S2 */

= S1 uses the value calculated by S2 in the
previous iteration (loop carried dependence)

= The dependence is not circular, S2 does not
depend on S1 in the previous iteration

for (i=1; i<=100; i=i+1) {
Al =All+Blil; /* 1%/
Bli+1]=C[i] + D[il; /* s2 */
J . .
Al1]=A[1] + B[1];

Al2]=Al2] + B[2]; Al99] =A[99] + BI99]; | A[100] = A[100] + B[100];

B[2]=C[1]+D[1]; | B[3]=C[2]+D[2]: B[100] = C[99] + D[99]; | g[101] = C[100] + D[100];
Al1]=A[1] + B[1];
for (i=1; i<=99; i=i+1) {
B[i+1] = C[i] + D[i];
Afi+1] = Afi+1] + Bli+1];

B[101] = C[100] + D[100];

Loop Start-up code _ Iteration 1

A=AMI+B[| A[2]=A[2)+B[2]; AI99]=A[99] + BI99J: | A100] = A[100] + B[100];

B[2]=C[1] + D[1}; B[3]=CRI+ DRl carried { B[100] = C[99] + D[99]; ‘ B[101] = C[100] + D[100];

Not Loop
Dependence Loop Completion code

Finding Dependence

= Finding dependences in the program is very
important for renaming and executing
instructions in parallel.

= Arrays and pointers makes finding dependences
very difficult.

= Assume array indices are affine, which means
on the form ai+b where a and b are constant.

= GCD test can be used to detect dependences.

Finding Dependence

Assume we stored an array with index value of
ai+b and loaded an array with an index value of
¢g+d

Are they pointing to the same location?
Assume the loop limit is m,n

= Are there

j,k m<jk<nsuchthat ax j+b=cxk+d

GCD test

= A simple and sufficient test for absence can be
found.

= If a loop dependence exists, then

GCD(c,a) divides (d —b)

GCD Test -- Example

for(i=1; i<=100; i=i+1) {
X[2*1+3] = x[2*i] * 5.0;
}
a=2 b=3 c¢=2 d=0
GCD(a,c) = 2
d-b= -3

2 does not divide -3 = No dependence
is not possible.

Y7 ONI K BIESNIIEN w77 R4 82
4,6,8,10,12,14,16,18,20,22,.....

Dependence Analysis

= Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

= Objects are referenced using pointers
= Array indexing using another array a[bl[i]]

= Dependence may exist for some values of input,
but in reality the input never takes these values.

= When we want to know more than the possibility
of dependence (which write causes it?)

= Dependence analysis across procedure
boundaries

Dependence Analysis

= Sometimes, points-to analysis might help.

= We might be able to answer simpler questions,
or get some hints.

= Do 2 pointers point to the same list?
= Type information

= Information derived when the object was
allocated

= Pointer assignments

Software Pipelines

= Software pipelined loop chooses instructions
from different loop iterations, thus separating the
dependent instructions within one iteration of the
original loop

foraton
o

Iteration
Iheration
2

Heeation
3

Haration
4

Software Piplines

Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
s.D F4,0(R1)
DADDUI R1,R1,#-8
BNE

Before: Unrolled 3 times After: Software Pipelined Version
1 L.D FO,0(R1) L.D F0,0(R1)

g QDB-D Eﬁ’§?§f§ ADD.D F4,F0,F2

4 LD FO.-8(R1) s L'S prbxégm)_ .

5 ADD.D F4,FO0,F2 - ,O(R1) ;Stores M[i]

6 S.D Fa._8(R1) 2 /ADD.D F4,F0,F2 ;Adds to M[i-1]
7 LoD ,;0‘_‘16(R1) 3 LD FO,-16(R1);Loads M[i-2]
8 ADD.D F4.FO.F2 4 DADDUI R1,R1,#-8

9 S.0 F4.-16(R1) 5 BNE R1,R2,LO0P

10 DADDUI R1,R1,#-24 S.D F4, O(R1)

11 BNE R1,R2,LO0P ADDD F4,F0,F2

S.D F4,-8(R1)

Software Pipelines

4 Software Pipelined loop iterations (2 iterations fewer)

Loop Body of software Pipelined Version

Software pipelines

L.D ADD
L.D ADD
L.D ADD
L.D

LD
Lb ADD

Loop: LD FO,0(R1) Loop: S.D F4,16(R1)
ADD.D F4, FO, F2 ADD.D F4, FO, F2
SD F4,0(R1) LD FO,0(R1)
DADD R1,R1#-8 DADD R1,R1#8
BNE R1,R2,Loop BNE R1,R2,Loop

