Parallel Processing
SIMD, Vector and
GPU’s - cont.

EECS4201 Fall 2016 York University
(1)
Multithreading
* First, we start with multithreading
* Multithreading is used in GPU’s
(2)

11/24/2016

11/24/2016

Thread Level Parallelism

* ILP is used in straight line code or loops

* Cache miss (off-chip cache and main
memory) is unlikely to be hidden using ILP.

* Thread level parallelism is used instead.

. '(Ij'hread: process with own instructions and
ata

thread may be a process part of a parallel program of
multiple processes, or it may be an independent
program

Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to
execute [3]

100 s

©
=4

H memory conflict

o
=4

B long fp

short fp

long integer
' short integer
load delays

D control hazards
E&] branch misprediction
B deache miss

3 I]II icache miss

y |E aub miss

N [itb miss

. processor busy

-
e

o
=]

=
e

Percent of Total Issue Cycles
2

w
=3

From: Tullsen, Eggers, and
Levy,

283 % R=445EaEz 2 “Sim.ult.a'neous Mu_ltithreading:
3 FEE g §§ g g § Maximizing On-chip
© T heaions 2§ Parallelism, ISCA 1995. [4 }

11/24/2016

Thread Level Parallelism

* Multithreading: multiple threads to share the functional
units of 1 processor via overlapping

processor must duplicate independent state of each thread e.g., a
separate copy of register file, a separate PC, and for running
independent programs, a separate page table

memory shared through the virtual memory mechanisms, which
already support multiple processes

HW for fast thread switch; much faster than full process switch ~
100s to 1000s of clocks

* When to switch?
Alternate instruction per thread (fine grain)

When a thread is stalled, perhaps for a cache miss, another [5]
thread can be executed (coarse grain)

Fine-Grained Multithreading

* Switches between threads on each instruction, causing
the execution of multiples threads to be interleaved

* Usually done in a round-robin fashion, skipping any
stalled threads
* CPU must be able to switch threads every clock

* Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one
thread stalls

* Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls
will be delayed by instructions from other threads

* Used on Sun’s T1 [6]

11/24/2016

Coarse-Grained Multithreading

* Switches threads only on costly stalls, such as L2 cache misses
* Advantages
Need to have very fast thread-switching

Doesn’t slow down thread, since instructions from other
threads issued only when the thread encounters a costly
stall

* Disadvantage is hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs
Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen
New thread must fill pipeline before instructions can
complete

* Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost [5]
stalls, where pipeline refill << stall time

Simultaneous Multithreading

* Fine-grained multithreading implemented
on top of multiple-issued dynamically
scheduled processor.

* Multiple instructions from different
threads.

SMT

Multithreaading

Fine-Grained Coarse-Grained

EEC]]
NINIEIE
HNEN
EELL
B LI
HEEE
ANNN
HNEN
00
FHH P
EEE]
NIHEn

] Thread1
Thread 2

EEC]]
B0
EEC]]
EEE]
NINEE
NININIE
NININIE
OO0
HNEN
OO0
EELL
B

[] Thread 3
FZ Thread 4

Multiprocessing
HENN
BHLUNN
E ERS[]
i
OOSS
OONC
HENN
T[N
B[]
BN
OONN

Simultaneous
Multithreading

EEN]
1 E E
AT HH
EEN]
NYE I
HEEE
CICE L
ENCE
EENL]
ENNC
EEER]
INME]:E

Bl Thread5
[] Idle slot

()

11/24/2016

SUNT1

* Focused on TLP rather than ILP

* Fine-grained multithreading

* 8 cores, 4 threads per core, one shared FP
unit.

* 6-stage pipeline (similar to MIPS with one
stage for thread switching)

* L1 caches: 16KB I, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

* L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming
no contention (1)

SUNTI1

* Relative change in the miss rate and
latency when executing one thread per
core vs 4 threads per core (TPC-C)

18
16
14
12 -
1
08 -
06
04
02

L1Imiss L1Dmiss L2miss L1Imiss L1Dmiss L2miss
rate rate rate latency latency latency 12

11/24/2016

SUNT1

* Breakdown of the status on an average
thread. Ready means the thread is ready,
but another one is chosen — The core stalls
only if all the 4 threads are not ready

100%

80%
= Not ready

60% -
W Ready

20% = Executing

20%

B e ()
TPC-C SPECIBBOO SPECWeb99

SUN t1

* Breakdown of the causes for a thread
being not ready

120%

100% -+

80% m Other
m Pipeline delay
W L2 miss

40% ® 11D miss

mL11miss

TPC-C SPECIBBOO SPECWeb99 [14 J

11/24/2016

11/24/2016

Graphics Processing Unite

* Started as graphics accelerators

* Given the investment we made in GPUs, can
we use it for other things?

* Offers multithreading, SIMD, MIMD and ILP.

* NVIDIA developed CUDA (Compute Unified
Device Architecture) to generate code for
CPU (host) and GPU (device).

* SIMT (Single Instruction Multiple Threads)
SIMD is not exposed to the programmer [15]

Programming the GPU

* CUDA uses __device or __ global and
__host

* Functions defined as __device or __global
are allocated to GPU

* Functions defined as __host are allocated
to the CPU

GPU

Streaming

Multiprocessor
(multi-threaded)

Streaming

Multiprocessor
(multi-threaded)

Streaming

Multiprocessor
(multi-threaded)

Streaming Multiprocessor

|-cache

I-cache

11/24/2016

0 20|g peaJyL

ST 20|g peaJyl

A[0]=B[0]*C[0] ‘

Al1]=B[1]*C[1] ‘

A[31]=B[31]*C[31]
A[32]=B[32]*C[32]
A[33]=B[33]*C[33]

A[33]=B[33]*C[33]

A [480] = B [480] * C [480]
A [481] =B [481] * C [481]

A [511] = B [511] * C [511]

A [7680] = B [7680] * C [7680] ‘
A [7681] = B [7681] * C [7681] ‘

A [7711] = B [7711] * C [7711]
A [7712] = B [7712] * C [7712]
A [7713] = B [7713] * C [7713]

A

A [7743] = B [7743] * C [7743]

(20)
A [8160] = B [8160] * C [8160]
A [8161] = B [8161] * C [8161]

A [8191] = B [8191] * C [8191]

Systolic Arrays

* ldea: memory is a bottleneck, once we access a
datum from the memory, fully utilize it before
return it to the memory again

¢ Data flowing in a “rhythm” being processed

* Similar to an assembly line
Different people work on the same car
Many cars are assembled simultaneously
Can be two-dimensional

* Advantages:
Simple, regular designs (keep # unique parts small and regular)
High concurrency = high performance
Balanced computation and I/O (memory access)
Used in accelerators [21 J

11/24/2016

10

Systolic Arrays

INSTEAD OF:
MEMORY 5 MILLION
OPERATIONS
100 ns PER SECOND
AT MOST
WE HAVE:
MEMORY 30 MOPS
POSSIBLE
100 ns
PE|PE | PE | PE | PE | PE
THE SYSTOLIC ARRAY

Example -- Convolution

* Y =W X+ Wy Xy + Wy Xiyq t o

()

11/24/2016

11

Convolution
" —{r, e Sler Sle
ST P U C
(@)
Yout r A 'Vm
J w Yout = Yin + W X
Xin L d Xout Xout — Xin
(b)

()

11/24/2016

12

