Parallel Processing
SIMD, Vector and
GPU’s

EECS4201 Fall 2016 York University

11/17/2016

Introduction

Vector and array processors
Chaining
GPU

Flynn's taxonomy

SISD: Single instruction operating on
Single Data

SIMD: Single instruction operating on
Multiple Data

MISD: Multiple instruction operating on
Single Data

MIMD: Multiple instructions operating on
Multiple Data

SIMD

SIMD architectures can exploit significant
data-level parallelism for:
matrix-oriented scientific computing
media-oriented image and sound processors
SIMD is more energy efficient than MIMD
Only needs to fetch one instruction per data operation
Makes SIMD attractive for personal mobile devices
SIMD allows programmer to continue to
think sequentially

11/17/2016

Vector vs. Array Processors

Array processors same instruction
operating on many data elements at the
same time (space)

Vector processors Same instruction
operating on many data in a pipeline
fashion (what is the difference between
this and regular pipelined processors?)

Vector Processors

Cray-1 was the first commercially
successful vector processor

VMIPS

* Example architecture: VMIPS

Loosely based on Cray-1

Vector registers
Each register holds a 64-element, 64 bits/element vector
Register file has 16 read ports and 8 write ports

Vector functional units
Fully pipelined
Data and control hazards are detected

Vector load-store unit
Fully pipelined
One word per clock cycle after initial latency

Scalar registers
32 general-purpose registers [8]
32 floating-point registers

VMIPS

11/17/2016

VMIPS Instructions

ADDVV.D V1V2V3
ADDVS.D V1V2,FO
v V1,R1
N R1V1
MULVV.D V1V2V3
DIVVV.D Viv2\y3

LVWS V1,(R1,R2)
Y] V1,(R1+V2)
oI V1,R1

SEQVV.D vi\Vv2
MVTM VM,FO
MTCI VLR,R1

add two vectors

add vector to a scalar

vector load from address

Vector store at R1

vector multiply

Vector div (element by element)
Load vector from R1, stride=R2
Load V1 with elements at R1+V2(i)
create an index vector in V1 (0, R1,
2R1,3R1,...

Compare elements V1,V2 0 or 1in
VM EQ, NE, GT, ...
Move contents of FO to vec. mask

Move rl to vector length register

11/17/2016

Vector Processing

ADDV V3, V1,V2

After an initial latency
(depth of pipeline) we

get one result per cycle.

We can do this with a
simple loop, what is the
difference?

R <
N <
W<

4—
le—1

I

Vector Execution Time

Execution time depends on three factors:
Length of operand vectors

Structural hazards
Data dependencies

VMIPS functional units consume one
element per clock cycle
Execution time is approximately the vector length

Convey

Set of vector instructions that could potentially
execute together (could be more than one instruction)

Chimes

Sequences with read-after-write dependency
hazards can be in the same convey via
chaining

Chaining
Allows a vector operation to start as soon as the individual
elements of its vector source operand become available

Chime
Unit of time to execute one convey
m conveys executes in m chimes
For vector length of n, requires m x n clock cycles

11/17/2016

Example

Lv V1,Rx ;load vector X
MULVS.D V2V1,FO ;vector-scalar multiply
Lv V3,Ry ;load vector Y
ADDVV.D Vav2ZVv3 ;add two vectors

N RyV4 ;store the sum
Convoys:

MUtVSD V2V1,FO Vector-statar-multiply

V4NV2NV3
Ryv4

;store the stm

4 conveys =>4 x 64 » 256 clocks (or 4 clocks per result)

Example

Consider the following example:
For (i=0;i<50.i++)
clil = (alil + b[i])/2
Sequence of improvements from in order

execution with one bank to chained vector
processor with multiple banks

11/17/2016

Assembly Code
Initialize registers RO, R1, R2, R3
LOOP LD R4, O(R1) 11
LD R5,0(R2) 11
ADD R6,R4,R5 4
SR R6, R6, 1 1
ST R6,0(R3) 11
ADDI R1,R1,4 1
ADDI R2,R2,4 1
ADDI R3,R3,4 1
ADDI RO, RO, -1 1
BEQZ RO, LOOP 2 =44*50
Vector Code

The loop is vectorizable

Initialize registers (including V_length and
stride) 5+5 dynamic instruction

LV V1, R1 11+50-1

LV V2, R2 11+50-1

ADDV V3,V1,V2 4+50-1

SV V3,V3,1 1+50-1

sV V3, R4 11+50-1 =293
Vector Code

Chaining: No need to wait until the vector
register is loaded, you can start after the
first element is ready.

How long Does it takes for the previous
case?

Vector Code

Chaining and 2 memory banks?

11/17/2016

Vector length

In the previous example, the vector length
is less than the VREG length.

What if more (operation on a vector of
1000 elements)

Loops each load perform on a 64 element

vector (need to adjust vector length in the
last iteration)

Vector Stripmining

= Vector length not known at compile time?
= Use Vector Length Register (VLR)

= Use strip mining for vectors over the maximum
length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (MVL); j=j+1) { /*outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a* X[i] + Y[i] ; /main operation*/
low = low + VL; /*start of next vector*/
VL = MVL; /*reset the length to maximum vector length*/

}

Fange ofi in-u

[

Effect of Memory

Load/store unit is more complicated than FU’s
Start-up time, is the time for the first word into a register
Memory system must be designed to support high
bandwidth for vector loads and stores
Spread accesses across multiple banks

Control bank addresses independently

Load or store non sequential words

Support multiple vector processors sharing the same memory
Example:

32 processors, each generating 4 loads and 2 stores/cycle

Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

How many memory banks needed?

11/17/2016

Example

Cray T932 has 32 processors. Each
processor is capable of generating 4 loads
and 2 stores per clock cycle.

Clock cycle is 2.167 ns, SRAM cycle time 15
ns. How many bank do we need to allow
the system to run at a full memory
bandwidth?

Example

*8 memory banks, bank busy time 6 cycles,
total memory latency 12 cycles.

e What is the difference between a 64-
element vector load with a stride of 1 and
32?

Stride

 Consider:
for (i = 0; i < 100; i=i+1)
for (j=0; j < 100; j=j+1) {
Alilljl = 0.0;
for (k = 0; k < 100; k=k+1)
Alil(j] = A[i][j] + Bi][k] * DIK][il;
}

* Must vectorize multiplication of rows of B with columns of D
* Use non-unit stride

« Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time: [25]
#banks / LCM(stride,#banks) < bank busy time

Strides

abank SE |Q M |O |D
0 |1 |2

0 |0 1 |2

1 (4 |5 |6

2 |8 |9 |10

3 [12 |13 |14

4 |16 |17 |18

5 |20 |21 |22

6 |24 |25 |26

7 |28 |29 |30

Strides

* MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

* Division still a problem

* But if we change the mapping such that

* Address in a bank = address MOD number of words in
a bank.

* Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.

* Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential
interleaving and modulo interleaving and notice the
conflict free access to rows and columns of a 4 by 4
matrix [27]

11/17/2016

Vector Mask Register

What if we have a conditional IF statement inside the
loop?

Using scalar architecture, that introduces control
dependence.

The vector-mask control: A mask register is used to
conditionally execute using a Boolean condition.

When the vector-mask register is enabled, any vector
instruction executed operate only on vector elements
whose corresponding entries in the VMR are ones.

The rest of the elements are unaffected.

Clearing the vector mask register, sets to all 1’s and
operations are performed on all the elements.

Does not save execution time for masked elements

11/17/2016

Vector Mask Register

Consider:
for (i = 0; i < 64; i=i+1)
if (X[i] !=0)

X[l = X[i] = Y[i];
Use vector mask register to “disable” elements:

LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D FO,#0 ;load FP zero into FO
SNEVS.D V1,FO ;sets VMI(i) to 1 if V1(i)!=FO
SUBVV.D ViVviv2 ;subtract under vector mask
NY Rx,V1 ;store the result in X

Strides

MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

Division still a problem

But if we change the mapping such that

Address in a bank = address MOD number of words in
a bank.

Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.
Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential
interleaving and modulo interleaving and notice the
conflict free access to rows and columns of a 4 by 4
matrix

10

Scatter-Gather

 Consider:
for (i=0;i<n;i=i+1)
AIK[iTl = ALK[i] + CIMIill;

* Use index vector:

Lv Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

svi (Ra+Vk), Va ;store A[K[]] (=]
Multiple lanes

* Element n of vector register A is “hardwired” to element
n of vector register B

NEEN
PP e was
(= { peet
ko ‘ ks ‘
i ey
ol
".I N
el
]

Not Quite SIMD

* Intel extension MMXx, SSE, AVX, PowerPC AltiVec, ARM
Advanced SIMD
* No vector length, just depends on the instruction, the

register can be considered 16 8-bit numbers, 8 16-bit
numbers, ...

(=)

11/17/2016

11

