
Assignment (EECS6327 F16)

Due: in class on Nov 18, 2016.

You have to work individually. Hand in a hardcopy of your answers before the dead-

line. No late submission will be accepted. No handwritting is accepted. Direct your queries

to Hui Jiang (hj@cse.yorku.ca).

1. (Missing Features) Suppose we have three classes in two dimensions with the

following underlying distributions:

• class ω1: p(x|ω1) ∼ N (0, I)

• class ω2: p(x|ω2) ∼ N
((

1
1

)
, I
)

• class ω3: p(x|ω3) ∼ 1
2
N
((

0.5
0.5

)
, I
)

+ 1
2
N
((−0.5

0.5

)
, I
)

whereN (µ,Σ) denotes 2-d Gaussian distribution with mean vector µ and covariance

matrix Σ, and I is identity matrix. Assume class prior probabilities P (ωi) = 1/3, i =

1, 2, 3.

(a) By explicit calculation of posterior probabilities, classify the feature x =
(

0.3
0.3

)
based on the MAP decision rule.

(b) Suppose that for a particular pattern the first feature is missing. Classify

x =
( ∗

0.3

)
for minimum probability of error.

(c) Suppose that for another pattern the second feature is missing. Classify x =(
0.3
∗

)
for minimum probability of error.

2. (Maximum Likelihood Estimation) Assume we have K different classes, i.e.

ω1, ω2, · · · , ωK . Each class ωk (k = 1, 2, · · · , K) is modeled by a multivariate

Gaussian distribution with the mean vector µk and the covariance matrix Σ, i.e.,

p(x | ωk) = N (x | µk,Σ), where Σ is the common covariance matrix for all K

classes. Suppose we have collected N data samples from these K classes, i.e.,

{x1,x2, · · · ,xN}, and let {l1, l2, · · · , lN} be their labels so that ln = k means the

data sample xn comes from the k-th class, ωk.
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Based on the given data set, derive the maximum-likelihood estimates for all model

parameters, i.e., all mean vectors µk (k = 1, 2, · · · , K) and the common covariance

matrix Σ.

3. (EM algorithm) Consider a D-dimensional variable x, each of whose dimensions,

xd, is an integer. Suppose the distribution of these variables is described by a

mixture of the multinomial distributions so that

p(x) =
K∑

k=1

πk p(x|µk) ∝
K∑

k=1

πk

D∏
d=1

µxd
kd

where the parameter µkd denotes the probability of d-th dimension in k-th compo-

nent, subject to 0 ≤ µkd ≤ 1 (∀k, d) and
∑

d µkd = 1 (∀k).

Given an observed data set {xn}, where n = 1, · · · , N , derive the E and M step

equations of the EM algorithm for optimizing the mixing weights πk (
∑

k πk = 1)

and the component parameters µkd of this distribution by maximum likelihood.

4. (Bayesian Networks) Consider three binary random variables a, b, c ∈ {0, 1}
having the joint distribution given in Figure 4. Show by direct evaluation that

this distribution has the property that a and b are marginally dependent, so that

p(a, b) 6= p(a)p(b), but that they become independent when conditioned on c, so

that p(a, b|c) = p(a|c)p(b|c).

Based on this observation, draw the corresponding directed graph for a, b, c, and

justify it based on the conditional probabilities for all edges.

Figure 1: The joint distribution over a, b, c.
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