Assignment (EECS6327 F16)

Due: in class on Nov 18, 2016.

You have to work individually. Hand in a hardcopy of your answers before the deadline. No late submission will be accepted. No handwritting is accepted. Direct your queries to Hui Jiang (hj@cse.yorku.ca).

1. (Missing Features) Suppose we have three classes in two dimensions with the following underlying distributions:

- class $\omega_{1}: p\left(\mathbf{x} \mid \omega_{1}\right) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- class $\omega_{2}: p\left(\mathbf{x} \mid \omega_{2}\right) \sim \mathcal{N}\left(\binom{1}{1}, \mathbf{I}\right)$
- class $\omega_{3}: p\left(\mathbf{x} \mid \omega_{3}\right) \sim \frac{1}{2} \mathcal{N}\left(\binom{0.5}{0.5}, \mathbf{I}\right)+\frac{1}{2} \mathcal{N}\left(\binom{-0.5}{0.5}, \mathbf{I}\right)$
where $\mathcal{N}(\mu, \Sigma)$ denotes 2-d Gaussian distribution with mean vector μ and covariance matrix Σ, and \mathbf{I} is identity matrix. Assume class prior probabilities $P\left(\omega_{i}\right)=1 / 3, i=$ $1,2,3$.
(a) By explicit calculation of posterior probabilities, classify the feature $\mathbf{x}=\binom{0.3}{0.3}$ based on the MAP decision rule.
(b) Suppose that for a particular pattern the first feature is missing. Classify $\mathbf{x}=\binom{*}{0.3}$ for minimum probability of error.
(c) Suppose that for another pattern the second feature is missing. Classify $\mathbf{x}=$ $\binom{0.3}{*}$ for minimum probability of error.

2. (Maximum Likelihood Estimation) Assume we have K different classes, i.e. $\omega_{1}, \omega_{2}, \cdots, \omega_{K}$. Each class $\omega_{k} \quad(k=1,2, \cdots, K)$ is modeled by a multivariate Gaussian distribution with the mean vector $\boldsymbol{\mu}_{k}$ and the covariance matrix $\boldsymbol{\Sigma}$, i.e., $p\left(\mathbf{x} \mid \omega_{k}\right)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}\right)$, where $\boldsymbol{\Sigma}$ is the common covariance matrix for all K classes. Suppose we have collected N data samples from these K classes, i.e., $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right\}$, and let $\left\{l_{1}, l_{2}, \cdots, l_{N}\right\}$ be their labels so that $l_{n}=k$ means the data sample \mathbf{x}_{n} comes from the k-th class, ω_{k}.

Based on the given data set, derive the maximum-likelihood estimates for all model parameters, i.e., all mean vectors $\boldsymbol{\mu}_{k}(k=1,2, \cdots, K)$ and the common covariance matrix Σ.
3. (EM algorithm) Consider a D-dimensional variable \mathbf{x}, each of whose dimensions, x_{d}, is an integer. Suppose the distribution of these variables is described by a mixture of the multinomial distributions so that

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}\right) \propto \sum_{k=1}^{K} \pi_{k} \prod_{d=1}^{D} \mu_{k d}^{x_{d}}
$$

where the parameter $\mu_{k d}$ denotes the probability of d-th dimension in k-th component, subject to $0 \leq \mu_{k d} \leq 1(\forall k, d)$ and $\sum_{d} \mu_{k d}=1(\forall k)$.

Given an observed data set $\left\{\mathbf{x}_{n}\right\}$, where $n=1, \cdots, N$, derive the E and M step equations of the EM algorithm for optimizing the mixing weights $\pi_{k}\left(\sum_{k} \pi_{k}=1\right)$ and the component parameters $\mu_{k d}$ of this distribution by maximum likelihood.
4. (Bayesian Networks) Consider three binary random variables $a, b, c \in\{0,1\}$ having the joint distribution given in Figure 4. Show by direct evaluation that this distribution has the property that a and b are marginally dependent, so that $p(a, b) \neq p(a) p(b)$, but that they become independent when conditioned on c, so that $p(a, b \mid c)=p(a \mid c) p(b \mid c)$.

Based on this observation, draw the corresponding directed graph for a, b, c, and justify it based on the conditional probabilities for all edges.

a	b	c	$p(a, b, c)$
0	0	0	0.192
0	0	1	0.144
0	1	0	0.048
0	1	1	0.216
1	0	0	0.192
1	0	1	0.064
1	1	0	0.048
1	1	1	0.096

Figure 1: The joint distribution over a, b, c.

