

No. 3

Machine Learning: Data vs Feature vs Model

Hui Jiang

Department of Electrical Engineering and Computer Science York University, Toronto, Canada

Machine Learning Framework

the more the better

compact representative

generative vs discriminative

feature engineering

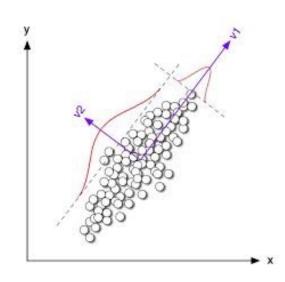
Outline

- The curse of dimensionality
- Feature Extraction
 - Linear:
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - Nonlinear (manifold learning):
 - Multi-Dimensional Scaling (MDS)
 - Stochastic Neighbourhood Embedding (SNE)
 - Locally Linear Embedding (LLE)
 - · IsoMap
 - Neural Network Bottlenecks
- Data Virtualization

The Curse of the Dimensionality

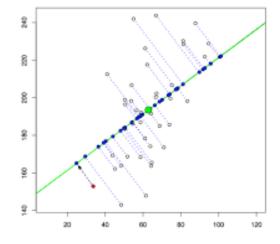
- Feature engineering ==> high-dimension feature vectors
- "The curse of the dimensionality"
- Highly correlated among dimensions
- Distance in high-dimension space is error-prone
- Intuition fails in high dimensions
 - High-D Gaussian distribution: most mass not near mean
 - Most mass of a high-D sphere is in the surface
 - Most points in high-D is more closer to the surface than their closest neighbours

Principal Component Analysis (PCA)



Two equivalent explanations:

1. Maximum variance formulation

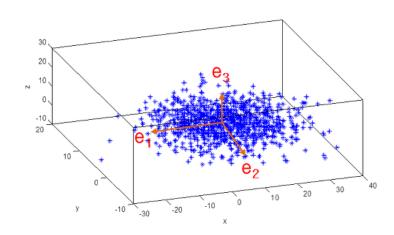


2. Minimum-error formulation

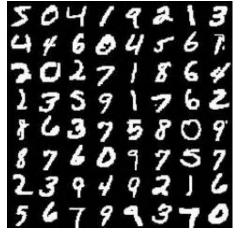
Principal Component Analysis (PCA)

Variance (energy) distribution among principal components

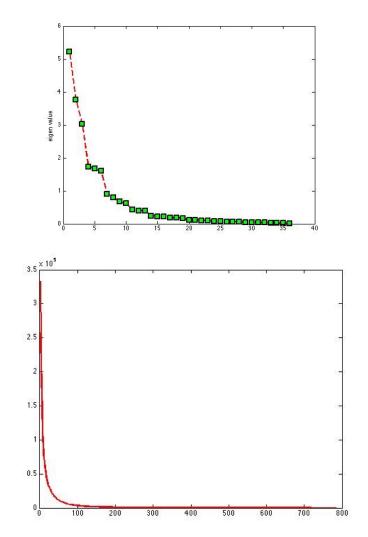
high-dimension data



MNIST



variance (energy) along dimensions after PCA



Principal Component Analysis (PCA)

A little math: maximize variance in linear projection

the variance of the projected data is given by

$$\frac{1}{N} \sum_{n=1}^{N} \left\{ \mathbf{u}_{1}^{\mathrm{T}} \mathbf{x}_{n} - \mathbf{u}_{1}^{\mathrm{T}} \overline{\mathbf{x}} \right\}^{2} = \mathbf{u}_{1}^{\mathrm{T}} \mathbf{S} \mathbf{u}_{1}$$

S is the data covariance matrix defined by

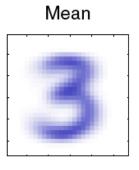
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}}.$$

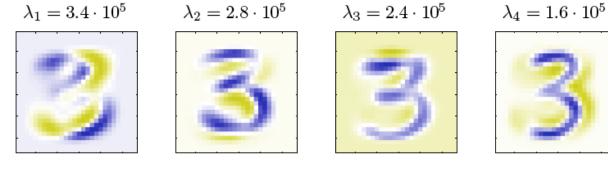
Applications of PCA

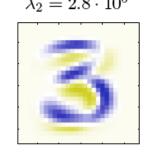
- **Dimensionality reduction**
- Reconstruct high-dimension data from the lower-dimension PCA features

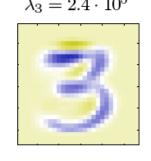
$$\widetilde{\mathbf{x}}_{n} = \sum_{i=1}^{M} (\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i}) \mathbf{u}_{i} + \sum_{i=M+1}^{D} (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_{i}) \mathbf{u}_{i}$$

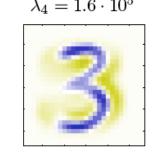
$$= \overline{\mathbf{x}} + \sum_{i=1}^{M} (\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i} - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_{i}) \mathbf{u}_{i}$$

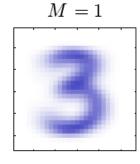




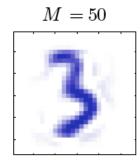


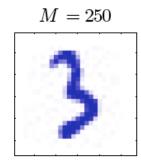






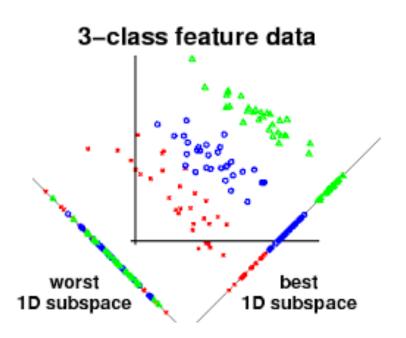
$$M = 10$$

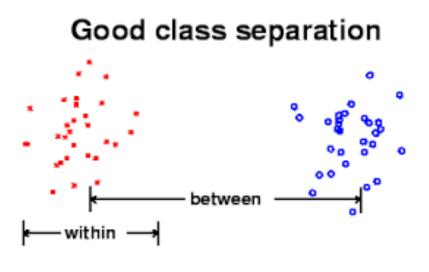




Linear Discriminant Analysis (LDA)

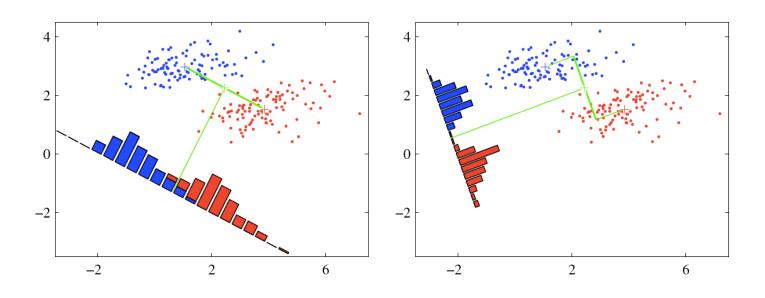
- Fisher's linear discriminant: maximize the class separation
- Supervised dimensionality reduction: needs class labels





Linear Discriminant Analysis (LDA)

- Fisher's linear discriminant: maximize the class separation using withinclass and between-class covariance matrices
- maximizing a ratio defined as:

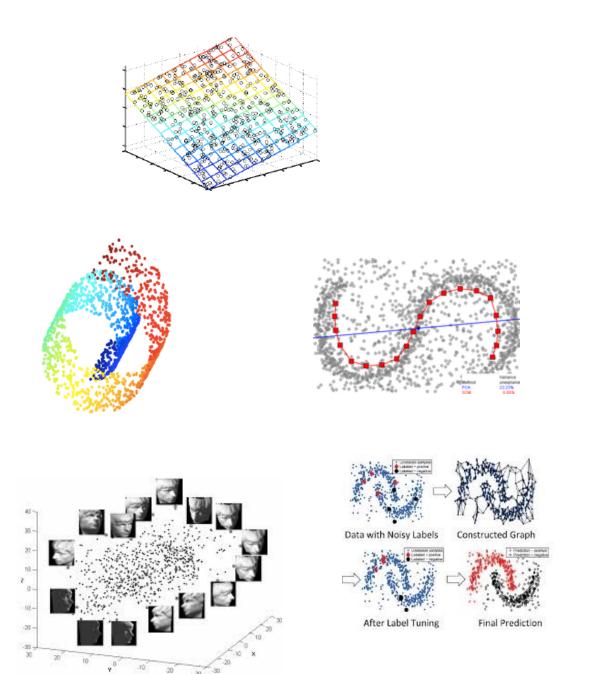


$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{W}} \mathbf{w}}$$

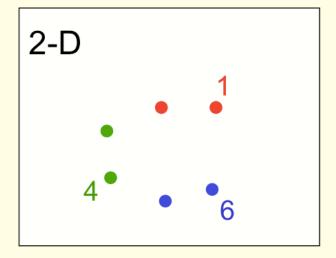
Related Work

- Probabilistic PCA (PPCA) (Tipping & Bishop, 1999a)
- Bayesian PCA, Kernel PCA, Sparse PCA
- Mixture of PPCA (Tipping & Bishop, 1999b)
- Factor Analysis
- Heteroscedastic LDA (HLDA/HDA) (Kumar & Andreous, 1998)
- Independent Component Analysis (ICA) (Hyvarinen & Oja, 2000)
- Projection Pursuit (Friedman & Tukey, 1974)

Manifold Learning: nonlinear dimensionality reduction



If we measure distances along the manifold, d(1,6) > d(1,4)



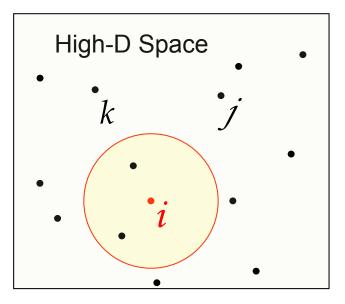
Multi-Dimensional Scaling (MDS)

Preserve between-object distances as much as possible

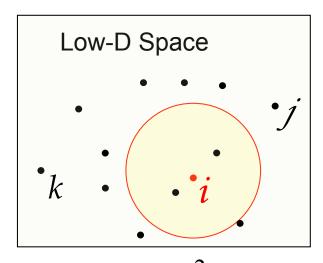
$$\begin{aligned} Cost &= \sum_{i < j} (d_{ij} - \hat{d}_{ij})^2 & \underset{\text{distance distance}}{\text{high-D}} & \underset{\text{distance distance}}{\text{low-D}} \\ d_{ij} &= \parallel x_i - x_j \parallel^2 & Cost &= \sum_{ij} \left(\frac{\parallel \mathbf{x}_i - \mathbf{x}_j \parallel - \parallel \mathbf{y}_i - \mathbf{y}_j \parallel}{\parallel \mathbf{x}_i - \mathbf{x}_j \parallel} \right)^2 \\ \hat{d}_{ij} &= \parallel y_i - y_j \parallel^2 \end{aligned}$$

Stochastic Neighbourhood Embedding (SNE)

A probabilistic local mapping method



$$p_{j|i} = \frac{e^{-d_{ij}^2/2\sigma_i^2}}{\sum_{k} e^{-d_{ik}^2/2\sigma_i^2}}$$



$$q_{j|i} = \frac{e^{-d_{ij}^2}}{\sum_{k} e^{-d_{ik}^2}}$$

$$Cost = \sum_{i} KL(P_i \parallel Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Locally Linear Embedding (LLE)

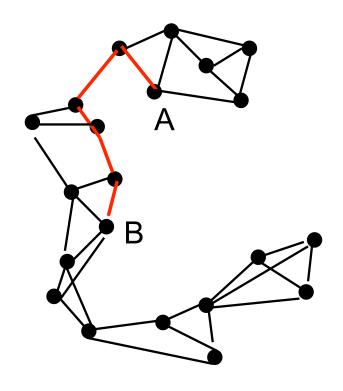
- Maps that preserve local geometry: local configurations of points in the low-dimensional space resemble the local configurations in the high-dimensional space.
- Represent a point as a weighted average of nearby points, the weights describe the local configuration: $\mathbf{x}_i \approx \sum_{j} w_{ij} \mathbf{x}_j$
- Use the data points in high-dimension to determine the local weights,
 then try to re-construct them from its neighbours in low-dimension.

$$Cost = \sum_{i} \|\mathbf{x}_{i} - \sum_{j \in N(i)} w_{ij} \mathbf{x}_{j}\|^{2}, \qquad \sum_{j \in N(i)} w_{ij} = 1$$

$$Cost = \sum_{i} \|\mathbf{y}_{i} - \sum_{j \in N(i)} w_{ij} \mathbf{y}_{j}\|^{2}$$

IsoMap: Local MDS without local optima

- Connect each datapoint to its K nearest neighbours in the highdimensional space.
- Put the true Euclidean distance on each of these links.
- Then approximate the manifold distance between any pair of points as the shortest path in this "neighbour graph".



Data Virtualization

- Project data into 2-D or 3D space for virtualization
- Popular approaches:
 - t-SNE: https://lvdmaaten.github.io/tsne/

