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Neural Networks: background

Network Structure

Learning Criterion

Optimization (SGD + Back-propagation)
Fine-tuning tricks

Advanced Topics on Deep Learning

- Other Network Structures (CNNs, RNNs/LSTMs)
- Sequence to Sequence Learning

- Unsupervised Learning (RBMs, auto-encoders, ...)
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Brain: biological neuronal networks

biological neuron
Neuronal nets

brain

- 100 billion (10'?) neurons; 100 trillion (10"°) connections.
- Neuron itself is simple.

- Connections and weights are more important in
neuronal networks.

- Connections and weights are all learnable.
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Artificial Neuron: a math model
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(Deep) (Artificial) Neural Networks
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Neural Networks: (a bit) theory

- Universal Approximator Theory, established around 1989-90

- G. Cybenko (1989); K. Hornik (1991)

Let cp() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,
denote the m-dimensional unit hypercube [O, l]m. The space of continuous functions on I, is
denoted by C(I,,,). Then, given any function f € C(I,,,) and € > 0, there exists an integer N, real

constants v;,b; € R and real vectors w; € R™, where ¢ = 1,---, N, such that we may define:
N
F(x) = Zvicp (wlz + b;)
i=1

as an approximate realization of the function f where f is independent of ¢; that is,

[F(z) — f(z)| <e

for all z € I,,,. In other words, functions of the form F'(z) are dense in C(I,;,).

- One hidden layer is theoretically sufficient, but it may becomes
extremely large.



Neural Networks: (a bit) theory

- Universal Approximator Theory is a double-edged sword:
- Model is powerful

- Overfitting

data signal + noise




Learning Neural Networks is
an optimization problem

- Given training data: (x1,t1), (x2,12), ...
- Given a network to be learnt: y=f (x| W)
- The error function (the objective function)

- Mean square error (MSE):

- Cross entropy error (CE):

QW) = KL({t:} || {f(xiW)}) = Z{lnfxtrW)}@-

)
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Gradient Descent

- Gradient Descent: hill-climbing

VAVAVAV;

- Reratively update network based on the gradient
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Error Back-propagation (BP)

- The key problem: how to computer gradients in the most efficient way?
- The Error Back-Propagation (BP) Algorithm
- Alocal perspective on how BP works ...

. Based on the well-known chain rule in Calculus ...
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Mini-batch Stochastic Gradient Descent

. Given all training data: (xi,t1), (x2,12), ...

- Randomly select a mini-batch (10-1000 samples) of data
 For every sample in the mini-batch (x,1)

* Forward pass: use NN to compute xi —> Vi

- Accumulate error for the mini-batch Qi

- Backward pass: back-propagate error Q; to compute gradients

+ Update network weights: 0+ _wo . 99W)
8W W=W )
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Neural Networks: how to compute gradients
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- Backward pass: back-propagate error signals through the
whole network



Error Back-propagation (BP)

- Multi-layer feedforward structure; sigmoid activations; cross-entropy errors

Given a training set X = {xy,l; |[t=1,2,--- , N}

QW) == {ln f(x:|W)},

Compute the error signals for each layer:
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Neural Networks Learning in practice

Open source toolkits: Tensorflow, Torch, CNTK, MXNet etc ...
. Computationally intensive (GPUs)
Many tuning tricks:

Mini-batch size

- Epoch

- Learning rates (annealing schedule)

- Network initialization

- Weight Decay (L2 norm regularization)
- Momentum

- Dropout

- Batch Normalization
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Neural Networks Initialization

NNs initialization is critical for a good convergence.
Random Initialization is sufficient.

- Uniform distribution

- Norm distribution

Controlling the dynamic range (variance) is the key.
A widely used trick from Glorot and Bengio (2010):
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Weight Decay

- Weight decaying is equivalent to L2 norm regularization.

Q(W) + A+ [[W][2

- Updating formula with weight decay:

W _ . 9QW)

- WW
8W W=W ()

W(l—l—l) — W
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Momentum

. Momentum is a simple technique to accelerate convergence
in slow but relevant directions, dampen oscillation in really
steep directions.

- Averaging the velocity at each updating step:

0Q(W) ‘
aW W=W )

wD — wO _ . AW

= &

Image 2: SGD without momentum Image 3: SGD with momentum
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Dropout

Dropbox is a simple regularization technique.
Randomly drop-out some nodes in training.
Equivalent to adding noises in training

A relevant technique: data augmentation

Present with Always
probability p present

a) Standard Neural Net

(c) At training time
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(d) At test time
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Other Optimization Algorithms

In addition to SGD, many other optimization algorithms may be
used:

- Nesterov accelerated gradient descent

- Adagrad Y — se0 |
_— Momentum§
= NAG

- Adadelta — Adagrad

Adadelta
Rmsprop |

- RMSprop

- Adam

- Hessian-free




Monitoring Three Learning Curves
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- How does your learning go?
- The objective function
- The error rates in the training set

- The error rates in a development set
20



Insights from Figures

- Monitoring learning curves tells you a lot about
the learning process ...
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Neural Networks Structures

- Feedforward multi-layer DNNs

- Fixed-size input —> fixed-size output

- Memoryless

- Fully-connected —> input location sensitive

- Recurrent Neural networks (RNNs)

- Convolutional Neural Networks (CNNs)
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RNNs

- Plain RNNs

i
A

- RNNs are notoriously hard to learn

- Computationally expensive
- Gradient vanishing or exploding

Long Short-Term Memory (LSTM)
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- Each CNN layer: a convolution layer + a pooling layer

CNNs

- Insensitive to input locations; suitable for image recognition

N\
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Neural Networks Learning in practice

- Open Source Toolkits:

Google’s Tensorflow (https://www.tensorflow.org/)

Facebook’s Torch (http://torch.ch/)

Microsoft’s CNTK (https:/github.com/Microsoft/CNTK/wiki)

MXNet (http://mxnet.io/)

- more
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Advanced Topics in Deep Learning

. Convolutional Neural Networks (CNNs)

. Recurrent Neural Networks (RNNs) and LSTMs
- Sequence to Sequence Learning

. Bottleneck Features

- Unsupervised Learning:

- Restricted Boltzmann Machine (RBM)

- (De-noising) Auto-Encoder

- Generative Adversarial Networks
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