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Neural Networks: background

Network Structure 

Learning Criterion 

Optimization (SGD + Back-propagation) 

Fine-tuning tricks 

Advanced Topics on Deep Learning

- Other Network Structures  (CNNs, RNNs/LSTMs)

- Sequence to Sequence Learning

- Unsupervised Learning (RBMs, auto-encoders, …) 

Outline
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Brain: biological neuronal networks 
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neuronbrain biological 
Neuronal nets

100 billion (1012) neurons; 100 trillion (1015) connections. 

Neuron itself is simple. 

Connections and weights are more important in 
neuronal networks.

Connections and weights are all learnable.



Artificial Neuron: a math model  
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Linear combination + a nonlinear activation function

sigmoid
tanh rectified linear (ReLU)



(Deep) (Artificial) Neural Networks  

5

multi-layer feedforward structure                   deep neural networks 



Universal Approximator Theory, established around 1989-90 

- G. Cybenko (1989); K. Hornik (1991)

One hidden layer is theoretically sufficient, but it may becomes 
extremely large.
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Neural Networks: (a bit) theory



Neural Networks: (a bit) theory  
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Universal Approximator Theory is a double-edged sword:

- Model is powerful 

- Overfitting  

data     =       signal     +      noise



Given training data:  (x1,t1), (x2,t2), …

Given a network to be learnt:  y = f ( x | W)  

The error function (the objective function) 

- Mean square error (MSE):

- Cross entropy error (CE):

Learning Neural Networks is 
an optimization problem  
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Gradient Descent:   hill-climbing 

Iteratively update network based on the gradient  

Gradient Descent   
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Error Back-propagation (BP)
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The key problem: how to computer gradients in the most efficient way?

- The Error Back-Propagation (BP) Algorithm

A local perspective on how BP works …

Based on the well-known chain rule in Calculus …



Given all training data:  (x1,t1), (x2,t2), …

Randomly select a mini-batch (10-1000 samples) of data 

• For every sample in the mini-batch (xi,ti)

• Forward pass:   use NN to compute xi   —>   yi

• Accumulate error for the mini-batch Qi

• Backward pass:  back-propagate error Qi to compute gradients

• Update network weights: 

Mini-batch Stochastic Gradient Descent   
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Neural Networks: how to compute gradients

Define error signals in each layer:

Backward pass:  back-propagate error signals through the 
whole network
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Error Back-propagation (BP)
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Multi-layer feedforward structure; sigmoid activations;  cross-entropy errors 

Given a training set X = {xt, lt | t = 1, 2, · · · , N}

Q(W) = �
NX
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{ln f(xt|W)}lt

Compute the error signals for each layer:



Neural Networks Learning in practice 
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Open source toolkits:  Tensorflow, Torch, CNTK, MXNet etc …

Computationally intensive (GPUs) 

Many tuning tricks:

- Mini-batch size

- Epoch 

- Learning rates (annealing schedule)  

- Network initialization 

- Weight Decay  (L2 norm regularization) 

- Momentum 

- Dropout

- Batch Normalization 

- … 



Neural Networks Initialization  
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NNs initialization is critical for a good convergence. 

Random Initialization is sufficient.

- Uniform distribution

- Norm distribution 

Controlling the dynamic range (variance) is the key.

A widely used trick from Glorot and Bengio (2010):



Weight Decay   
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Weight decaying is equivalent to L2 norm regularization. 

Updating formula with weight decay: 
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Momentum  
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Momentum is a simple technique to accelerate convergence 
in slow but relevant directions, dampen oscillation in really 
steep directions.

Averaging the velocity at each updating step:
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Dropbox is a simple regularization technique.

Randomly drop-out some nodes in training.

Equivalent to adding noises in training

A relevant technique: data augmentation 

Dropout



Other Optimization Algorithms 

19

In addition to SGD, many other optimization algorithms may be 
used: 

- Nesterov accelerated gradient descent 

- Adagrad

- Adadelta 

- RMSprop

- Adam

- Hessian-free



Monitoring Three Learning Curves 
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How does your learning go?

- The objective function 

- The error rates in the training set

- The error rates in a development set

epoch epoch



Insights from Figures
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Monitoring learning curves tells you a lot about 
the learning process …



Neural Networks Structures 
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Feedforward multi-layer DNNs

- Fixed-size input —> fixed-size output

- Memoryless

- Fully-connected —> input location sensitive

Recurrent Neural networks (RNNs)

Convolutional Neural Networks (CNNs)



RNNs 
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Plain RNNs 

RNNs are notoriously hard to learn

- Computationally expensive

- Gradient vanishing or exploding 

Long Short-Term Memory (LSTM)



CNNs 
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Each CNN layer: a convolution layer + a pooling layer

Insensitive to input locations; suitable for image recognition  



Neural Networks Learning in practice 
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Open Source Toolkits:  

- Google’s Tensorflow   (https://www.tensorflow.org/)

- Facebook’s Torch (http://torch.ch/)

- Microsoft’s CNTK (https://github.com/Microsoft/CNTK/wiki)

- MXNet (http://mxnet.io/)

- more



Advanced Topics in Deep Learning
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Convolutional Neural Networks (CNNs) 

Recurrent Neural Networks (RNNs) and LSTMs 

Sequence to Sequence Learning

Bottleneck Features 

Unsupervised Learning:

- Restricted Boltzmann Machine (RBM)

- (De-noising) Auto-Encoder  

- Generative Adversarial Networks


