Probabilistic Models and Machine Learning

No. 7 **Graphical Models**

Hui Jiang

Department of Electrical Engineering and Computer Science York University, Toronto, Canada

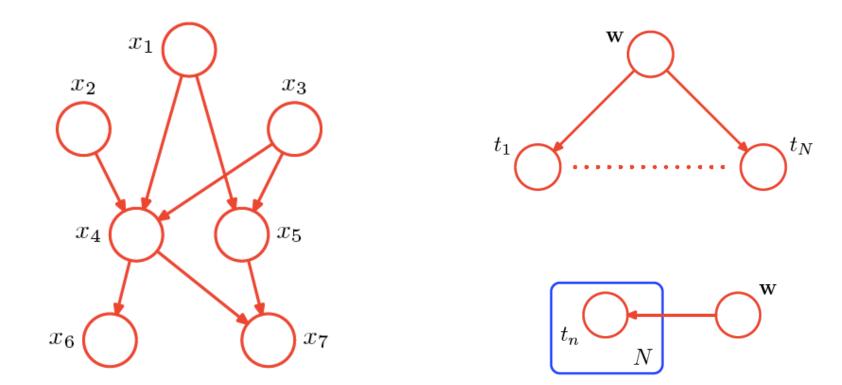
- Graphical Model: concepts
- Graphical Model: types
 - Directed Graphical Models (aka. Bayesian Networks)
 - Indirected Graphical Models (aka. Markov Random Fields)
- Exact Inference
 - Example: a chain model
 - Sum-product algorithm
 - Max-sum algorithm
- Approximate Inference
 - Loopy Belief Propagation
 - Variational Inference
 - Expectation Propagation
 - Monte Carlo Sampling

Graphical Model

- Use a graph to represent joint distributions of random variables
 - Nodes —> random variables (RV)
 - Linking —> dependency among RVs
- Graphical Models may imply conditional independence among RVs.

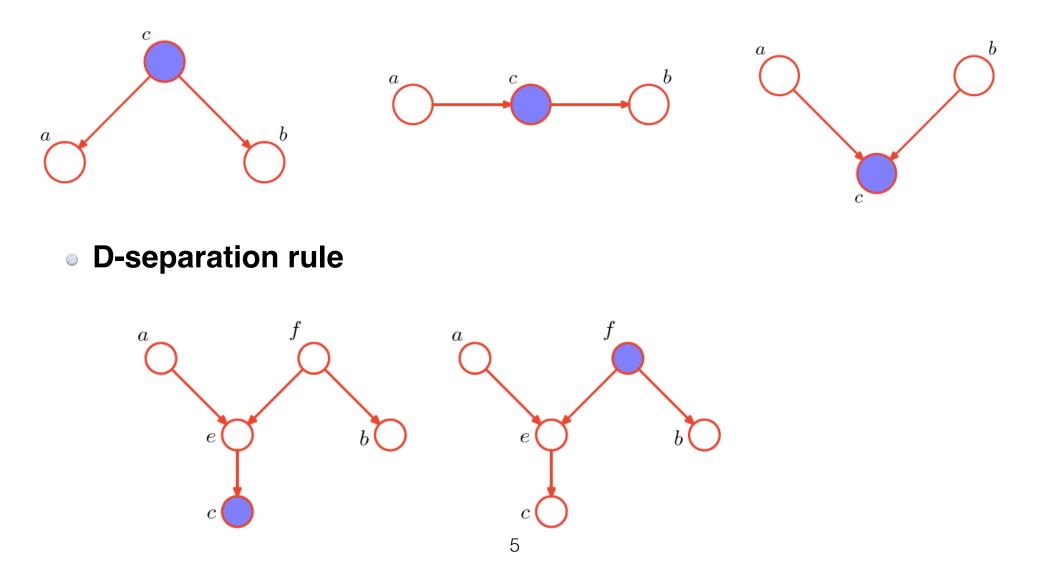
Bayesian Networks (1)

- Use a directed graph to represent joint distributions of random variables
 - Nodes —> random variables (RV)
 - Linking —> conditional distribution of children given the parents



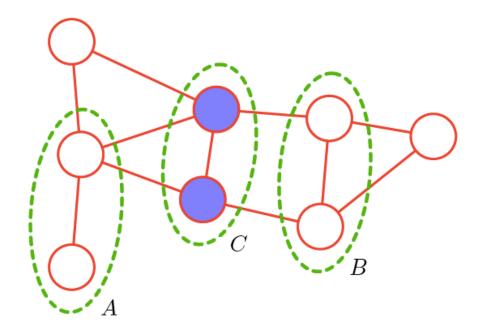
Bayesian Networks (2)

- Conditional independence in Bayesian Networks
 - tail-to-tail, head-to-tail, head-to-head (explain-away)



Markov Random Fields (1)

- Use an undirected graph to represent joint distributions of random variables
 - Nodes —> random variables (RV)
 - Linking —> conditional dependency
- Conditional independence == simple graph separation



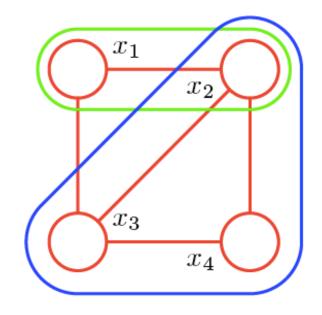
Markov Random Fields (2)

- How to form the joint probability distribution?
 - Potential functions: defined over maximal cliques

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C).$$

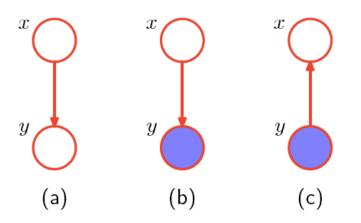
Partition function: normalization constant

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

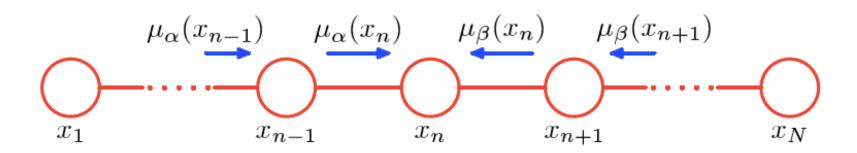


Exact Inference In Graphical Models

- What is Inference?
- Message Propagation for Inference
 - Two nodes —> Bayes' theorem



Inference on a chain



Exact Inference In Graphical Models

- Tree-structured Graphical models
 - Sum-Product (Max-sum) algorithm
- General Graphs
 - Junction tree algorithms
 - Computationally expensive

Sum-Product algorithm (1)

- Form factor graphs
- Message propagation

 x_1 x_2 x_1 x_2 x_2 $f(x_1, x_2, x_3)$

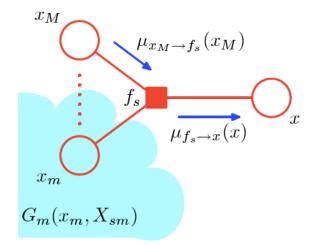
factor node —> variable node

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

variable node —> factor node

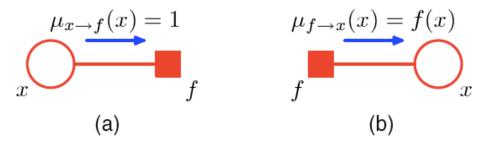
$$\mu_{x_m \to f_s}(x_m) = \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

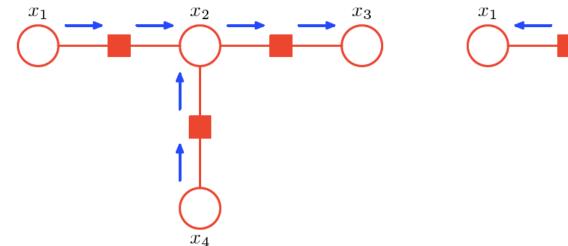
- Two-pass propagation
 - from leafs to root
 - from root to leafs

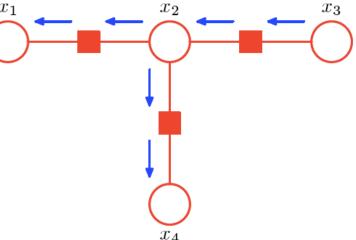


Sum-Product algorithm (2)

- Two-pass propagation over the whole graph with initial messages
 - from leafs to root
 - from root to leafs







Approximate Inference Methods

- Loopy Belief Propagation
- Variational Inference
- Expectation Propagation
- Mento Carlo Sampling

Variational Inference

- Approximate posterior distributions by the variational distributions
- Variational Distributions:
 - Factorized approximation based on mean field theory
- Variational message passing
 - updating is done via a local calculation on the graph
 - Applicable to large networks
- Example: Variational Bayes of Gaussian mixture models

Mento Carlo Sampling

Estimate p(x2, x5, x6, x7 | x1, x3, x4)

